网址:http://m.1010jiajiao.com/timu_id_89519[举报]
一、A;A;C;D;A;A; C;C;B;C;C;A
二、13、
或
; 14、80; 15、-2;16、
;
17、解:⑴----文科数学.files/image237.gif)
………………………………………3分
时,由
得函数的递增区间为----文科数学.files/image245.gif)
时,由
得函数的递增区间为
…………………………………………5分
⑵----文科数学.files/image253.gif)
……………………………………………7分
时,
得:
(舍)
时,
得----文科数学.files/image263.gif)
综上,
……………………………………………………10分
18、解:用
分别表示三列火车正点到达的事件,则
----文科数学.files/image269.gif)
⑴恰有两列火车正点到达的概率记为
,则
……………………………………………4分
⑵用
表示误点的列数,则至少两列误点可表示为:
----文科数学.files/image277.gif)
………………………………………………………6分
19.解:方法一:(I)证明:
,
又
平面
平面ABCD,平面
平面ABCD=BC,
----文科数学.files/image289.gif)
平面ABCD ……2分
在梯形ABCD中,可得----文科数学.files/image293.gif)
,即----文科数学.files/image297.gif)
在平面ABCD内的射影为AO,
……4分
(II)解:
,且平面
平面ABCD
平面PBC,
平面PBC,----文科数学.files/image309.gif)
为二面角P―DC―B的平面角 ……6分
是等边三角形
即二面角P―DC―B的大小为
…8分
(III)证明:取PB的中点N,连结CN,
①
,且平面
平面ABCD,
平面PBC ……10分
平面PAB
平面
平面PAB ②
由①、②知
平面PAB…………..10分
连结DM、MN,则由MN//AB//CD,
,
得四边形MNCD为平行四边形,
,
平面PAB.
平面PAD
平面
平面PAB ……………….12分
方法二:取BC的中点O,因为
是等边三角形,
由侧面
底面ABCD 得
底面ABCD ……1分
以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立如图所示的空间直角坐标系O―xyz……2分
----文科数学.files/image345.gif)
(I)证明:
,则在直角梯形中,----文科数学.files/image349.gif)
在等边三角形PBC中,
……3分
----文科数学.files/image353.gif)
----文科数学.files/image357.gif)
,即
…4分
(II)解:取PC中点N,则----文科数学.files/image363.gif)
----文科数学.files/image365.gif)
平面PDC,显然
,且
平面ABCD
所夹角等于所求二面角的平面角 ……6分
----文科数学.files/image375.gif)
,
二面角
的大小为
……8分
(III)证明:取PA的中点M,连结DM,则M的坐标为----文科数学.files/image381.gif)
又
……10分
,----文科数学.files/image387.gif)
即----文科数学.files/image391.gif)
平面PAB,
平面
平面PAB ……12分
20.解:Ⅰ由已知得:
……………………………………2分
当
解得:
…………………………………………3分
当
时,
,带入上式得:----文科数学.files/image403.gif)
配方得:----文科数学.files/image405.gif)
所以
……………………………………………5分
所以
……………………………………7分
Ⅱ----文科数学.files/image411.gif)
……………………………………………………………………10分
………………………12分
22解:⑴----文科数学.files/image465.gif)
则
,所以
……………………………3分
;由此可知
当
时,函数
单调递增
当
时,函数
单调递减,
当
时,函数取极大值
……………………………………………………………6分
⑵
在区间
上是单调减函数,
所以
在区间
上恒成立,有二次函数的图像可知:
;令
……………………………………………9分
当直线
经过交点
时,取得最小值
…………………………………13分
A.选修4-1:几何证明选讲
如图,已知AB,CD是圆O的两条弦,且AB是线段CD的 垂直平分线,若AB=6,CD=2
| 5 |
B.选修4-2:矩阵与变换(本小题满分10分)
已知矩阵M=
|
C.选修4-4:坐标系与参数方程(本小题满分10分)
在平面直角坐标系xOy中,已知曲线C的参数方程是
|
D.选修4-5:不等式选讲(本小题满分10分)
已知关于x的不等式|ax-1|+|ax-a|≥1的解集为R,求正实数a的取值范围.
已知an(n∈N*)是二项式(2+x)n的展开式中x的一次项的系数.
(Ⅰ)求an;
(Ⅱ)是否存在等差数列{bn},使an=b1cn1+b2cn2+b3cn3+…+bncnn对一切正整数n都成立?并证明你的结论.
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
(1)、选修4-1:几何证明选讲
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA
(2)选修4-2:矩阵与变换(本小题满分10分)
若点A(2,2)在矩阵M=
|
(3)选修4-2:矩阵与变换(本小题满分10分)
在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.
(4)选修4-5:不等式选讲(本小题满分10分)
已知a1,a2…an都是正数,且a1•a2…an=1,求证:(2+a1)(2+a2)…(2+an)≥3n.
A.[选修4-1:几何证明选讲]
已知△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与点A,C重合),延长BD至点E.
求证:AD的延长线平分∠CDE
B.[选修4-2:矩阵与变换]
已知矩阵A=
|
(1)求A的逆矩阵A-1;
(2)求A的特征值和特征向量.
C.[选修4-4:坐标系与参数方程]
已知曲线C的极坐标方程为ρ=4sinθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为
|
D.[选修4-5,不等式选讲](本小题满分10分)
设a,b,c均为正实数,求证:
| 1 |
| 2a |
| 1 |
| 2b |
| 1 |
| 2c |
| 1 |
| b+c |
| 1 |
| c+a |
| 1 |
| a+b |
----文科数学.files/image418.gif)
----文科数学.files/image420.gif)
----文科数学.files/image422.gif)
----文科数学.files/image424.gif)
----文科数学.files/image426.gif)
----文科数学.files/image428.gif)
----文科数学.files/image430.gif)
----文科数学.files/image432.gif)
----文科数学.files/image435.gif)
----文科数学.files/image437.gif)
----文科数学.files/image439.gif)
----文科数学.files/image441.gif)
----文科数学.files/image443.gif)
----文科数学.files/image445.gif)
----文科数学.files/image447.gif)
----文科数学.files/image449.gif)
----文科数学.files/image451.gif)
----文科数学.files/image453.gif)
----文科数学.files/image455.gif)
----文科数学.files/image457.gif)
----文科数学.files/image459.gif)
----文科数学.files/image461.gif)
----文科数学.files/image463.gif)