摘要:A.点A B.点B C.点C D.点D
网址:http://m.1010jiajiao.com/timu_id_759825[举报]
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=10cm,OC=6cm.F是线段OA上的动点,从点O出发,以1cm/s的速度沿OA方向作匀速运动,点Q在线段AB上.已知A、Q两点间的距离是O、F两点间距离的a倍.若用(a,t)表示经过时间t(s)时,△OCF、△FAQ、△CBQ中有两个三角形全等.请写出(a,t)的所有可能情况 .
查看习题详情和答案>>
查看习题详情和答案>>
如图,已知:△ABC中,
(1)只用直尺(没有刻度)和圆规求作一点P,使点P到三角形各边的距离都相等(要求保留作图痕迹,不必写出作法).
(2)若△ABC中,AC=AB=4,∠CAB=120°,那么请计算以△ABC为轴截面的圆锥的侧面积(保留根号和π). 查看习题详情和答案>>
(1)只用直尺(没有刻度)和圆规求作一点P,使点P到三角形各边的距离都相等(要求保留作图痕迹,不必写出作法).
(2)若△ABC中,AC=AB=4,∠CAB=120°,那么请计算以△ABC为轴截面的圆锥的侧面积(保留根号和π). 查看习题详情和答案>>
探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2.
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为 .(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=
x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.
查看习题详情和答案>>
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2.
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为
(2)如图②,在平面直角坐标系中有两条直线l1:y=
3 | 4 |
查看习题详情和答案>>
已知抛物线y=-
(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由. 查看习题详情和答案>>
2 | 3 |
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由. 查看习题详情和答案>>