摘要:31.探究题

网址:http://m.1010jiajiao.com/timu_id_742926[举报]

探究题:
数学问题:各边长都是整数,最大边长为21的三角形有多少个?
为解决上面的数学问题,我们先研究下面的数学模型:
数学模型:在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,有多少种不同取法?
为找到解决问题的方法,我们把上面数学模型简单化.
(1)在1~4这4个自然数中,每次取两个不同的数,使得所取的两个数之和大于4,有多少种取法?
根据题意,有下列取法:1+4,2+3,2+4,3+2,3+4,4+1,4+2,4+3,而1+4与4+1,2+3与3+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3
2
=4=
42
4
种不同的取法.
(2)在1~5这5个自然数中,每次取两个不同的数,使得所取的两个数之和大于5,有多少种取法?
根据题意,有下列取法:1+5,2+4,2+5,3+4,3+5,4+2,4+3,4+5,5+1,5+2,5+3,5+4,而1+5与5+1,2+4与4+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+2+3+4
2
=6=
52-1
4
种不同的取法.
(3)在1~6这6个自然数中,每次取两个不同的数,使得所取的两个数之和大于6,有多少种不同的取法?
根据题意,有下列取法:1+6,2+5,2+6,3+4,3+5,3+6,4+3,4+5,4+6,5+2,5+3,5+4,5+6,6+1,6+2,6+3,6+4,6+5,而1+6与6+1,2+5与5+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5
2
=9=
62
4
种不同的取法.
(4)在1~7这7个自然数中,每次取两个不同的数,使得所取的两个数之和大于7,有多少种取法?
根据题意,有下列取法:1+7,2+6,2+7,3+5,3+6,3+7,4+5,4+6,4+7,5+3,5+4,5+6,5+7,6+2,6+3,6+4,6+5,6+7,7+1,7+2,7+3,7+4,7+5,7+6,而1+7与7+1,2+6与6+2,…是同一种取法,所以上述每一种取法都重复过一次,因此共有
1+2+3+3+4+5+6
2
=12=
72-1
4
种不同的取法…
问题解决
仿照上述研究问题的方法,解决上述数学模型和提出的问题
(1)在1~21这21个自然数中,每次取两个不同的数,使得所取的两个数之和大于21,共有
 
种不同取法;(只填结果)
(2)在1~n(n为偶数)这n个自然数中,每次取两个数,使得所取的两个数字之和大于n,共有
 
种不同取法;(只填最简算式)
(3)在1~n(n为奇数)这n个自然数中,每次取两个数,使得所取的两个数之和大于n,共有
 
种不同取法;(只填最简算式)
(4)各边长都是整数且不相等,最大边长为21的三角形有多少个?(写出最简算式和结果,不写分析过程)
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网