摘要:16.如图.弦AB和CD相交于⊙O内一点P.且AP=4cm.BP=3cm.CP=5cm.则DP的长为 .
网址:http://m.1010jiajiao.com/timu_id_725373[举报]
请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.
已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:
+
的值;
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:
+
的值;
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:
+
的值,并给出证明.
查看习题详情和答案>>
圆内的两条相交弦,被交点分成的两条线段长的积相等.即如图1,若弦AB、CD交于点P,则PA•PB=PC•PD.请你根据以上材料,解决下列问题.
已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作-弦AC,过A、C两点分别作⊙O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R.(如图2)
(1)若AC恰经过圆心O,请你在图3中画出符合题意的图形,并计算:
1 |
PQ |
1 |
PR |
(2)若OP⊥AC,请你在图4中画出符合题意的图形,并计算:
1 |
PQ |
1 |
PR |
(3)若AC是过点P的任一弦(图2),请你结合(1)(2)的结论,猜想:
1 |
PQ |
1 |
PR |
请阅读下列材料:
圆内的两条相交弦,被交点分成的两条线段长的积相等,即如图(1),若弦AB、CD交于点P则PA·PB=PC·PD,请你根据以上材料,解决下列问题,已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作一弦AC,过A、C两点分别作圆O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R。(如图(2))
圆内的两条相交弦,被交点分成的两条线段长的积相等,即如图(1),若弦AB、CD交于点P则PA·PB=PC·PD,请你根据以上材料,解决下列问题,已知⊙O的半径为2,P是⊙O内一点,且OP=1,过点P任作一弦AC,过A、C两点分别作圆O的切线m和n,作PQ⊥m于点Q,PR⊥n于点R。(如图(2))
(1)若AC恰经过圆心O,请你在图(3)中画出符合题意的图形,并计算:的值;
(2)若OP⊥AC,请你在图(4)中画出符合题意的图形,并计算:的值;
(3)若AC是过点P的任一弦(图(2)),请你结合(1)(2)的结论,猜想:的值,并给出证明。
查看习题详情和答案>>
(2)若OP⊥AC,请你在图(4)中画出符合题意的图形,并计算:的值;
(3)若AC是过点P的任一弦(图(2)),请你结合(1)(2)的结论,猜想:的值,并给出证明。
20、选做题(请从A.B两题中选做一题即可)
A题:在平面内确定四个点,连接每两点,使任意三点构成等腰三角形(包括等边三角形),且每两点之间的线段长只有两个数值.举例如下:图中相等的线段AB=BC=CD=DA,AC=BE.
请你画出满足题目条件的三个图形,并指出每个图形中相等的线段.
B题:如图,已知扇形OAB的圆心角为90°,点C和点D是AB的三等分点,半径OC、OD分别和弦AB交于E、F.请找出图中除扇形半径以外的所有相等的线段,并加以证明.
查看习题详情和答案>>
A题:在平面内确定四个点,连接每两点,使任意三点构成等腰三角形(包括等边三角形),且每两点之间的线段长只有两个数值.举例如下:图中相等的线段AB=BC=CD=DA,AC=BE.
请你画出满足题目条件的三个图形,并指出每个图形中相等的线段.
B题:如图,已知扇形OAB的圆心角为90°,点C和点D是AB的三等分点,半径OC、OD分别和弦AB交于E、F.请找出图中除扇形半径以外的所有相等的线段,并加以证明.