摘要:(1)证明:由有 .∴ .∴交点.此时二次函数为 .由②③联立.消去y.有. ∴无论m为何实数值.二次函数的图象与直线总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m过点D.∴ -3=0+m.
网址:http://m.1010jiajiao.com/timu_id_6270[举报]
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a<0,当此函数图象与x轴的两个交点的距离为
时,求出此二次函数的解析式;
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
?若存在,求出P点坐标;若不存在,请说明理由.
查看习题详情和答案>>
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a<0,当此函数图象与x轴的两个交点的距离为
13 |
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为
3
| ||
2 |
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;
(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式;
(3)若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为?若存在,求出P点坐标;若不存在,请说明理由.
查看习题详情和答案>>
已知二次函数y=x2+ax+a-2.
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点A、B的距离为时,求出此二次函数的解析式.
(3)若(2)中的条件不变,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.
查看习题详情和答案>>
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点.
(2)设a<0,当此函数图象与x轴的两个交点A、B的距离为时,求出此二次函数的解析式.
(3)若(2)中的条件不变,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.