摘要:(1)求实数a的值.并判断f(x)在[0.+)上的单调性,
网址:http://m.1010jiajiao.com/timu_id_58945[举报]
设f(x)=x2-tx+3lnx,,且a、b为函数f(x)的极值点(0<a<b)
(1)判断函数g(x)在区间(-b,-a)上的单调性,并证明你的结论;
(2)若曲线g(x)在x=1处的切线斜率为-4,且方程g(x)-m=0(x≤0)有两个不等的实根,求实数m的取值范围.
(3)若f(x)在区间[3,+∞)上单调递增,讨论曲线y=f(x)与x轴的交点个数.
函数f(x)=x+
(a为常数)的图象过点(2,0),
(Ⅰ)求a的值并判断f(x)的奇偶性;
(Ⅱ)函数g(x)=lg[f(x)+2x-m]在区间[2,3]上有意义,求实数m的取值范围;
(Ⅲ)讨论关于x的方程|f(x)|=t+4x-x2(t为常数)的正根的个数. 查看习题详情和答案>>
a | x |
(Ⅰ)求a的值并判断f(x)的奇偶性;
(Ⅱ)函数g(x)=lg[f(x)+2x-m]在区间[2,3]上有意义,求实数m的取值范围;
(Ⅲ)讨论关于x的方程|f(x)|=t+4x-x2(t为常数)的正根的个数. 查看习题详情和答案>>
已知f(x)=loga
(a>0且a≠1).
(1)判断函数f(x)的奇偶性,并证明;
(2)若a>1,用单调性定义证明函数f(x)在区间(1,+∞)上单调递减;
(3)是否存在实数a,使得f(x)的定义域为[m,n]时,值域为[1-logan,1-logam],若存在,求出实数a的取值范围;若不存在,则说明理由.
查看习题详情和答案>>
x+1 | x-1 |
(1)判断函数f(x)的奇偶性,并证明;
(2)若a>1,用单调性定义证明函数f(x)在区间(1,+∞)上单调递减;
(3)是否存在实数a,使得f(x)的定义域为[m,n]时,值域为[1-logan,1-logam],若存在,求出实数a的取值范围;若不存在,则说明理由.