题目内容

已知f(x)=loga
x+1x-1
(a>0且a≠1).
(1)判断函数f(x)的奇偶性,并证明;
(2)若a>1,用单调性定义证明函数f(x)在区间(1,+∞)上单调递减;
(3)是否存在实数a,使得f(x)的定义域为[m,n]时,值域为[1-logan,1-logam],若存在,求出实数a的取值范围;若不存在,则说明理由.
分析:(1)根据对数函数的真数大于0建立不等式,解之即可求出函数的定义域,判定是否对称,然后根据函数奇偶性的定义进行判定即可;
(2)任取x1,x2∈(1,+∞),且x1<x2,然后比较真数的大小,从而得到f(x1)与f(x2)的大小,最后根据单调性的定义进行判定即可;
(3)假设存在实数a满足题目条件,然后根据函数在区间[m,n]上单调性建立等式关系,然后转化成方程x2+(1-a)x+a=0在区间(1,+∞)上有两个不同的实根,从而可求出a的取值范围.
解答:解:(1)由
x+1
x-1
>0
得:x<-1或x>1.
所以,函数f(x)的定义域为(-∞,-1)∪(1,+∞).
又∵f(-x)=loga
-x+1
-x-1
=loga
x-1
x+1
=-loga
x+1
x-1
=-f(x)

∴f(x)为奇函数.
(2)任取x1,x2∈(1,+∞),且x1<x2,则x1-x2<0.
因为
x1+1
x1-1
-
x2+1
x2-1
=
2(x2-x1)
(x1-1)(x2-1)
>0

所以
x1+1
x1-1
x2+1
x2-1
,又因为a>1,所以loga
x1+1
x1-1
>loga
x2+1
x2-1

故f(x1)>f(x2),所以,函数f(x)在区间(1,+∞)上单调递减.
(3)假设存在实数a满足题目条件.
由题意得:m>0,n>0,又∵[m,n]⊆(-∞,-1)∪(1,+∞),
∴1<m<n
又∵1-logan>1-logam,
∴logam>logan,解得a>1.
由(2)得:函数f(x)在区间(1,+∞)上单调递减.
所以,函数f(x)在区间[m,n]上单调递减.
故,
f(m)=1-logam
f(n)=1-logan
,所以
loga
m+1
m-1
=loga
a
m
loga
n+1
n-1
=loga
a
n

所以
m2+(1-a)m+a=0
n2+(1-a)n+a=0
,∴m,n是方程x2+(1-a)x+a=0的两个不同的实根.
故,方程x2+(1-a)x+a=0在区间(1,+∞)上有两个不同的实根.
△=(1-a)2-4a>0
-
1-a
2
>1
f(1)>0
,解得:a>3+2
2
.又∵a>1,
所以,a>3+2
2

所以,满足题目条件的实数a存在,实数a的取值范围是(3+2
2
,+∞)
点评:本题主要考查了函数奇偶性的判定,以及单调性的判定和奇偶性与单调性的综合应用,同时考查了转化的思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网