摘要:故.
网址:http://m.1010jiajiao.com/timu_id_530599[举报]
,
,
为常数,离心率为
的双曲线
:
上的动点
到两焦点的距离之和的最小值为
,抛物线
:
的焦点与双曲线
的一顶点重合。(Ⅰ)求抛物线
的方程;(Ⅱ)过直线
:
(
为负常数)上任意一点
向抛物线
引两条切线,切点分别为
、
,坐标原点
恒在以
为直径的圆内,求实数
的取值范围。
【解析】第一问中利用由已知易得双曲线焦距为,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程
第二问中,为
,
,
,
故直线的方程为
,即
,
所以,同理可得:
借助于根与系数的关系得到即,
是方程
的两个不同的根,所以
由已知易得,即
解:(Ⅰ)由已知易得双曲线焦距为,离心率为
,则长轴长为2,故双曲线的上顶点为
,所以抛物线
的方程
(Ⅱ)设为
,
,
,
故直线的方程为
,即
,
所以,同理可得:
,
即,
是方程
的两个不同的根,所以
由已知易得,即
查看习题详情和答案>>
如图,在正三棱柱ABC-A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201010/26/2ba85d7d.png)
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201010/26/d4662afa.png)
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
∴FG∥AA1,△AA1C∽△FGC,
⑤∵
∴FG=
AA1=
BB1,即BE=
BB1,故BE=EB1.
查看习题详情和答案>>
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201010/26/2ba85d7d.png)
(1)求证:BE=EB1;
(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.
注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201010/26/d4662afa.png)
(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.
①∵
∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,
②∵
∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.
③∵
∴BE∥FG,四边形BEGF是平行四边形,BE=FG,
④∵
∴FG∥AA1,△AA1C∽△FGC,
⑤∵
∴FG=
1 |
2 |
1 |
2 |
1 |
2 |
深夜,一辆出租车牵涉到一起交通事故中,该市有红色与绿色两种颜色的出租车2000辆,其中绿色出租车和红色出租车分别占整个城市的85%和15%,根据现场目击者说:事故现场的出租车是红色的.有关部门对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车有较大的肇事嫌疑.
(1)根据现场目击者的说法,填写下列的信息表,并求红色出租车肇事的概率;
(2)试问:肇事的认定对红色出租车公平吗?请说明理由.
查看习题详情和答案>>
(1)根据现场目击者的说法,填写下列的信息表,并求红色出租车肇事的概率;
证人所说的颜色(正确率80%) | |||
真实颜色 | 绿色(辆) | 红色(辆) | 合计 |
绿色(85%) | 1700 | ||
红色(15%) | 300 | ||
合计(辆) | 2000 |