摘要:由题意可得: 解得:
网址:http://m.1010jiajiao.com/timu_id_516706[举报]
(本小题满分14分)
已知函数
对于任意
(
),都有式子
成立(其中
为常数).
(Ⅰ)求函数
的解析式;
(Ⅱ)利用函数
构造一个数列,方法如下:
对于给定的定义域中的
,令
,
,…,
,…
在上述构造过程中,如果
(
=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果
不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求
的取值范围;
(ⅱ)是否存在一个实数
,使得取定义域中的任一值作为
,都可用上述方法构造出一个无穷数列
?若存在,求出
的值;若不存在,请说明理由;
(ⅲ)当
时,若
,求数列
的通项公式.
(本小题满分14分)
已知函数
对于任意
(
),都有式子
成立(其中
为常数).
(Ⅰ)求函数
的解析式;
(Ⅱ)利用函数
构造一个数列,方法如下:
对于给定的定义域中的
,令
,
,…,
,…
在上述构造过程中,如果
(
=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果
不在定义域中,那么构造数列的过程就停止.
(ⅰ)如果可以用上述方法构造出一个常数列,求
的取值范围;
(ⅱ)是否存在一个实数
,使得取定义域中的任一值作为
,都可用上述方法构造出一个无穷数列
?若存在,求出
的值;若不存在,请说明理由;
(ⅲ)当
时,若
,求数列
的通项公式.
已知函数
(Ⅰ)求函数
(Ⅱ)利用函数
对于给定的定义域中的
在上述构造过程中,如果
(ⅰ)如果可以用上述方法构造出一个常数列,求
(ⅱ)是否存在一个实数
(ⅲ)当
下列几个命题:
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
的在(-∞,1]有意义,则a=-1;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有 .
查看习题详情和答案>>
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
| ax+1 |
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有