ÌâÄ¿ÄÚÈÝ
ÏÂÁм¸¸öÃüÌ⣺¢Ù·½³Ìx2+£¨a-3£©x+a=0µÄÓÐÒ»¸öÕýʵ¸ù£¬Ò»¸ö¸ºÊµ¸ù£¬Ôòa£¼0£»
¢ÚÈôº¯Êýy=
ax+1 |
¢Ûº¯Êýf£¨x£©µÄÖµÓòÊÇ[-2£¬2]£¬Ôòº¯Êýf£¨x+1£©µÄÖµÓòΪ[-3£¬1]£»
¢Üº¯Êýy=log2£¨-x+1£©+2µÄͼÏó¿ÉÓÉy=log2£¨-x-1£©-2µÄͼÏóÏòÉÏƽÒÆ4¸öµ¥Î»£¬Ïò×óƽÒÆ2¸öµ¥Î»µÃµ½£®
¢ÝÈô¹ØÓÚx·½³Ì|x2-2x-3|=mÓÐÁ½½â£¬Ôòm=0»òm£¾4
ÆäÖÐÕýÈ·µÄÓÐ
·ÖÎö£º±¾Ì⿼²éµÄ·½³Ìº¯ÊýµÄ»ù±¾ÐÔÖÊ£¬ÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹Øϵ£¬¼°º¯ÊýµÄ»ù±¾ÐÔÖÊ£¬¶Ô¸÷¸ö½áÂÛÖðÒ»½øÐÐÅжϣ¬²»Äѵõ½ÕýÈ·µÄ´ð°¸£®
½â´ð£º½â£ºÈô·½³Ìx2+£¨a-3£©x+a=0µÄÓÐÒ»¸öÕýʵ¸ù£¬Ò»¸ö¸ºÊµ¸ù£¬ÔòÁ½¸ùÖ®»ýСÓÚ0£¬¼´a£¼0£¬¹Ê¢ÙÕýÈ·£»
µ±a=0ʱ£¬º¯Êýy=
µÄÔÚ£¨-¡Þ£¬1]ÓÐÒâÒ壬˵Ã÷Èôº¯Êýy=
µÄÔÚ£¨-¡Þ£¬1]ÓÐÒâÒ壬Ôòa=-1²»Ò»¶¨ÕýÈ·£¬¹Ê¢Ú´íÎó£®
Èôº¯Êýf£¨x£©µÄÖµÓòÊÇ[-2£¬2]£¬Ôòº¯Êýf£¨x+1£©µÄÖµÓòҲΪ[-2£¬2]£¬¹Ê¢Û´íÎó£®
y=log2£¨-x-1£©-2µÄͼÏóÏòÉÏƽÒÆ4¸öµ¥Î»£¬Ïò×óƽÒÆ2¸öµ¥Î»µÃµ½y=log2£¨-x-3£©+2µÄͼÏ󣬹ʢܴíÎó£®
¹ØÓÚx·½³Ì|x2-2x-3|=mµÄ½âÓÐÈçϼ¸ÖÖÇé¿ö£ºm£¼0ʱ£¬Î޽⣬m=0ʱ£¬ÓÐÁ½½â£¬0£¼m£¼4ʱ£¬ÓÐËĽ⣬m=0ʱ£¬ÓÐÈý½â£¬m£¾4ʱ£¬ÓÐÁ½½â£¬¹Ê¢ÝÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Ý
µ±a=0ʱ£¬º¯Êýy=
ax+1 |
ax+1 |
Èôº¯Êýf£¨x£©µÄÖµÓòÊÇ[-2£¬2]£¬Ôòº¯Êýf£¨x+1£©µÄÖµÓòҲΪ[-2£¬2]£¬¹Ê¢Û´íÎó£®
y=log2£¨-x-1£©-2µÄͼÏóÏòÉÏƽÒÆ4¸öµ¥Î»£¬Ïò×óƽÒÆ2¸öµ¥Î»µÃµ½y=log2£¨-x-3£©+2µÄͼÏ󣬹ʢܴíÎó£®
¹ØÓÚx·½³Ì|x2-2x-3|=mµÄ½âÓÐÈçϼ¸ÖÖÇé¿ö£ºm£¼0ʱ£¬Î޽⣬m=0ʱ£¬ÓÐÁ½½â£¬0£¼m£¼4ʱ£¬ÓÐËĽ⣬m=0ʱ£¬ÓÐÈý½â£¬m£¾4ʱ£¬ÓÐÁ½½â£¬¹Ê¢ÝÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Ý
µãÆÀ£º´úÊýµÄºËÐÄÄÚÈÝÊǺ¯Êý£¬º¯ÊýµÄ¶¨ÒåÓò¡¢ÖµÓò¡¢ÐÔÖʾùΪ¸ß¿¼Èȵ㣬ËùÓÐÒªÇóͬѧÃÇÊìÁ·ÕÆÎÕº¯ÊýÌرðÊÇ»ù±¾º¯ÊýµÄͼÏóºÍÐÔÖÊ£¬²¢ÄܽáºÏƽÒÆ¡¢¶Ô³Æ¡¢ÉìËõ¡¢¶ÔÕ۱任µÄÐÔÖÊ£¬ÍƳö»ù±¾º¯Êý±ä»»µÃµ½µÄº¯ÊýµÄÐÔÖÊ£¬ÓÖÓÉÓÚº¯Êý¡¢²»µÈʽ¡¢·½³ÌÖ®¼äµÄ±çÖ¤¹Øϵ£¬¹ÊÎÒÃÇÔÚ½â¾öº¯ÊýÎÊÌâÊǾ³£ÒªÓõ½·½³ÌµÄÐÔÖÊ£¬ÆäÖÐΤ´ï¶¨ÀíÊÇ×îÖØÒªµÄ·½³ÌµÄÐÔÖÊ£¬ÆäÄÚÈÝΪ£ºÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸ö¸ù·Ö±ðΪx1£¬x2£¬Ôòx1+x2=-
£¬x1•x2=
b |
a |
c |
a |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿