摘要:所以的分布列为:--------------------------
网址:http://m.1010jiajiao.com/timu_id_513956[举报]
给出下列命题:
①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边的中点的横坐标之和;
②随机误差e是衡量预报精确度的一个量,它满足E(e)=0;
③某随机变量X服从正态分布,其密度函数是φ(x)=
e-
(x∈R),σ越小,则X集中在μ周围的概率越大;
④a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一条平行;
⑤如果三棱锥S-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
.
其中真命题的是
查看习题详情和答案>>
①在频率分布直方图中估计平均数,可以用每个小矩形的高乘以底边的中点的横坐标之和;
②随机误差e是衡量预报精确度的一个量,它满足E(e)=0;
③某随机变量X服从正态分布,其密度函数是φ(x)=
1 | ||
|
(x-μ)2 |
2σ2 |
④a,b是两条异面直线,P为空间一点,过P总可以作一个平面与a,b之一垂直,与另一条平行;
⑤如果三棱锥S-ABC的各条棱长均为1,则该三棱锥在任意一个平面内的射影的面积都不大于
1 |
2 |
其中真命题的是
①②③⑤
①②③⑤
.(写出所有正确命题的编号)某运动员射击一次所得环数X的分布列如下:
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ,
(Ⅰ)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的分布列;
(Ⅲ)求ξ的数学期望Eξ。
查看习题详情和答案>>
(Ⅰ)求该运动员两次都命中7环的概率;
(Ⅱ)求ξ的分布列;
(Ⅲ)求ξ的数学期望Eξ。
某运动员射击一次所得环数X的分布列如下:
X | 0~6 | 7 | 8 | 9 | 10 |
Y | 0 | 0.2 | 0.3 | 0.3 | 0.2 |
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(1)求该运动员两次都命中7环的概率;
(2)求ξ的分布列.
某运动员射击一次所得环数X的分布列如下:
X | 0~6 | 7 | 8 | 9 | 10 |
Y | 0 | 0.2 | 0.3 | 0.3 | 0.2 |
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为ξ.
(1)求该运动员两次都命中7环的概率;
(2)求ξ分布列;
(3)求ξ的数学希望.
查看习题详情和答案>>
16.
某运动员射击一次所得环数X的分布列如下:
X | 0-6 | 7 | 8 | 9 | 10 |
p | 0 | 0.2 | 0.3 | 0.3 | 0.2 |
现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为。
(Ⅰ)求该运动员两次都命中7环的概率:
(Ⅱ)求的分布列:
(Ⅲ)求的数学期望E
。