网址:http://m.1010jiajiao.com/timu_id_512676[举报]
(09年湖北百所重点联考理)(12分)某旅游点有50辆自行车供游客租赁使用,管理这些自德车的费用是每日115元。
根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。
为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数的解析式及其定义域;
如图,已知圆锥体的侧面积为
,底面半径
和
互相垂直,且
,
是母线
的中点.
(1)求圆锥体的体积;
(2)异面直线与
所成角的大小(结果用反三角函数表示).
【解析】本试题主要考查了圆锥的体积和异面直线的所成的角的大小的求解。
第一问中,由题意,得
,故
从而体积.2中取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.在
OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
则,所以异面直线SO与P成角的大arctan
解:(1)由题意,得
,
故从而体积
.
(2)如图2,取OB中点H,联结PH,AH.
由P是SB的中点知PH//SO,则(或其补角)就是异面直线SO与PA所成角.
由SO平面OAB,
PH
平面OAB,PH
AH.
在OAH中,由OA
OB得
;
在中,
,PH=1/2SB=2,
,
则,所以异面直线SO与P成角的大arctan
查看习题详情和答案>>
(08年重点中学联考二文) 有下列四个命题:
①是
的充分不必要条件;
②函数的图象按向量
平移后得到的函数为
;
③定义在上的函数
,对任意的
满足
,且
,则
的图象关于直线
对称;
④若满足
,则使
恒成立的
的取值范围是
其中正确的结论是 。
查看习题详情和答案>>