摘要:(Ⅱ)求数列的前项和.并求使得对任意都成立的最大正整数m,
网址:http://m.1010jiajiao.com/timu_id_505360[举报]
设数列的前项和为,对一切,点在函数的图象上.
(1)求a1,a2,a3值,并求的表达式;
(2)将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内所有项之和,并设由这些和按原来括号的前后顺序构成的数列为,求的值;w*w^w.k&s#5@u.c~o*m
(3)设为数列的前项积,是否存在实数,使得不等式对一切都成立?若存在,求出的取值范围;若不存在,请说明理由.
设数列的前项和为,对一切,点在函数的图象上.
(1)求a1,a2,a3值,并求的表达式;
(2)将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内所有项之和,并设由这些和按原来括号的前后顺序构成的数列为,求的值;
(3)设为数列的前项积,是否存在实数,使得不等式对一切都成立?若存在,求出的取值范围;若不存在,请说明理由.
(1)求a1,a2,a3值,并求的表达式;
(2)将数列依次按1项、2项、3项、4项循环地分为(),(,),(,,),(,,,);(),(,),(,,),(,,,);(),…,分别计算各个括号内所有项之和,并设由这些和按原来括号的前后顺序构成的数列为,求的值;
(3)设为数列的前项积,是否存在实数,使得不等式对一切都成立?若存在,求出的取值范围;若不存在,请说明理由.
(15分)已知是数列的前项和,(,),且.
(1)求的值,并写出和的关系式;
(2)求数列的通项公式及的表达式;
(3)我们可以证明:若数列有上界(即存在常数,使得对一切 恒成立)且单调递增;或数列有下界(即存在常数,使得对一切恒成立)且单调递减,则存在.直接利用上述结论,证明:存在.
查看习题详情和答案>>