网址:http://m.1010jiajiao.com/timu_id_49873[举报]
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有 一项是符合题目要求的。
1.B 2.D 3.B 4.C 5.C 6.A 7.A 8.B 9.D 10.C
二、填空题:本大题共5个小题,每小题4分,共20分,把答案填在题中的横线上。
11.6 12.2 13.80 14. 15.4
三、解答题:本大题共6小题,共75分。解答应写文字说明,证明过程或演算步骤.
16.解(1)证明:由得
∴………………………………………………4分
(2)由正弦定理得 ∴……① …………6分
又,=2, ∴ …………② …………8分
解①②得 , …………………………………………10分
∴ . …………………12分
17.解:(1)由得, 即又=1 , ∴=3,……2分
∴………………………4分
(2)设,∴ ………①
∴………②………………………………7分
①-②得
=
=……………………………………………10分
∴, ∴.……………………12分
18.解:(1)分别取BE、AB的中点M、N,
连接PM、MC,PN、NC,则PM=1,MB=,BC=,
∴MC=,而PN=MB=,
NC=,∴PC=,…………………………4分
∴
故所求PC与AB所成角的余弦值为………6分
(2)连结AP,∵二面角E-AB-C是直二面角,且AC⊥AB
∴∠BAP即为所求二面角的平面角,即∠BAP=300……8分
在RtΔBAF中,tan∠ABF=,∴∠ABF=600,
故BF⊥AP, …………………………………………………………10分
又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC…………………………12分
18.另解:分别以AB、AC、AF为x、y、z轴建立直角坐标系,
则,
∴
而, ∴
故异面直线PC与AB所成的角的余弦值为。
(2)分别设平面ABC和平面PAC的法向量分别为,P点坐标设为,则而,则由
得
且 ∴,
再由得
∴,,
而
∴,即
BF⊥AP,BF⊥AC∴BF⊥平面PAC
19.解:(1)当0<x≤10时,……2分
当x >10时,…………4分
…………………………………5分
(2)①当0<x≤10时,由
当
∴当x=9时,W取最大值,且……9分
②当x>10时,W=98
当且仅当…………………………12分
综合①、②知x=9时,W取最大值.
所以当年产量为9千件时,该公司在这一品牌服装生产中获利最大.……13分
20.解: (1)………………………2分
即 ………4分
∴是 (也可写成闭区间)…………6分
(2) ……………………8分
不等式组所确定的平面区域如图所示。…………………………………10分
设
……………………………………13分
21.(1)B(0,-b)
,即D为线段FP的中点.,
∴……………………………2分
,即A、B、D共线.
而
∴,得,………………………4分
∴………………………………5分
(2)∵=2,而,∴,
故双曲线的方程为………①………………………………6分
∴B、的坐标为(0,-1)
设的方程为…………②
②代入①得
由题意得: 得:…………9分
设M、N的坐标分别为(x1,y1) 、(x2,y2)
则
而
………11分
整理得, 解得: 或(舍去)
∴所求的方程为………………………………13分