摘要:所以. -------------14分
网址:http://m.1010jiajiao.com/timu_id_497643[举报]
(本题14分)阅读:设Z点的坐标(a, b),r=||,θ是以x轴的非负半轴为始边、以OZ所在的射线为终边的角,复数z=a+bi还可以表示为z=r(cosθ+isinθ),这个表达式叫做复数z的三角形式,其中,r叫做复数z的模,当r≠0时,θ叫做复数z的幅角,复数0的幅角是任意的,当0≤θ<2π时,θ叫做复数z的幅角主值,记作argz.
根据上面所给出的概念,请解决以下问题:
(1)设z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),请写出复数的三角形式与代数形式相互之间的转换关系式;
(2)设z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的复数乘法、除法的运算法则,请写出三角形式下的复数乘法、除法的运算法则.(结论不需要证明)
查看习题详情和答案>>如图所示,将数以斜线作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),….并顺次称其为第1群,第2群,第3群,第4群,….则第7群中的第2项是:
第n群中n个数的和是:
查看习题详情和答案>>
96
96
;1 | 3 | 5 | 7 | 9 | … |
2 | 6 | 10 | 14 | 18 | … |
4 | 12 | 20 | 28 | 36 | … |
8 | 24 | 40 | 56 | 72 | … |
16 | 48 | 80 | 112 | 114 | … |
… | … | … | … | … | … |
3•2n-2n-3
3•2n-2n-3
.