摘要:②常用的证明组合等式方法例.
网址:http://m.1010jiajiao.com/timu_id_490941[举报]
(Ⅰ)求证:
=
;
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
=
;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n0)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
C | m n |
n |
m |
C | m-1 n-1 |
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n] |
1-(1+x) |
(1+x)n+1-(1+x) |
x |
(Ⅰ)求证:;
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
(Ⅱ)利用第(Ⅰ)问的结果证明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;
(Ⅲ)其实我们常借用构造等式,对同一个量算两次的方法来证明组合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=;,由左边可求得x2的系数为C22+C32+C42+…+Cn2,利用右式可得x2的系数为Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.请利用此方法证明:(C2n)2-(C2n1)2+(C2n2)2-(C2n3)2+…+(C2n2n)2=(-1)nC2nn.
查看习题详情和答案>>
我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
,而右边(1+x)n(1+x)n=(
+
x+
x2+…+
xn)(
+
x+
x2+…+
xn),xn的系数为
+
+
+…+
=(
)2+(
)2+(
)2+…+(
)2,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
)2+(
)2+(
)2+…+(
)2=
.
利用上述方法,化简(
)2-(
)2+(
)2-(
)2+…+(
)2=
查看习题详情和答案>>
C | n 2n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 0 n |
C | n n |
C | 1 n |
C | n-1 n |
C | 2 n |
C | n-2 n |
C | n n |
C | 0 n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | n 2n |
利用上述方法,化简(
C | 0 2n |
C | 1 2n |
C | 2 2n |
C | 3 2n |
C | 2n 2n |
(-1)n
C | n 2n |
(-1)n
.C | n 2n |
我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
,而右边(1+x)n(1+x)n=(
+
x+
x2+…+
xn)(
+
x+
x2+…+
xn),xn的系数为
+
+
+…+
=(
)2+(
)2+(
)2+…+(
)2,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
)2+(
)2+(
)2+…+(
)2=
.
利用上述方法,化简(
)2-(
)2+(
)2-(
)2+…+(
)2=______.
查看习题详情和答案>>
C | n2n |
C | 0n |
C | 1n |
C | 2n |
C | nn |
C | 0n |
C | 1n |
C | 2n |
C | nn |
C | 0n |
C | nn |
C | 1n |
C | n-1n |
C | 2n |
C | n-2n |
C | nn |
C | 0n |
C | 0n |
C | 1n |
C | 2n |
C | nn |
C | 0n |
C | 1n |
C | 2n |
C | nn |
C | n2n |
利用上述方法,化简(
C | 02n |
C | 12n |
C | 22n |
C | 32n |
C | 2n2n |