题目内容

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
C
n
2n
,而右边(1+x)n(1+x)n=(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)
,xn的系数为
C
0
n
C
n
n
+
C
1
n
C
n-1
n
+
C
2
n
C
n-2
n
+…+
C
n
n
C
0
n
=(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2=
C
n
2n

利用上述方法,化简(
C
0
2n
)2-(
C
1
2n
)2+(
C
2
2n
)2-(
C
3
2n
)2+…+(
C
2n
2n
)2
=
(-1)n
C
n
2n
(-1)n
C
n
2n
分析:根据题意,构造等式(x-1)2n•(x+1)2n=(x2-1)2n,分别从等式的左边和等式的右边求得x2n的系数,令其相等,即可求得原式的值.
解答:解:根据题意,构造等式(x-1)2n•(x+1)2n=(x2-1)2n
由等式的左边可得x2n的系数为C2n2n•(-1)2nC2n0+C2n2n-1•(-1)2n-1C2n1+C2n2n-2•(-1)2n-2C2n2+…+C2n0•(-1)0C2n2n
即(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2
由右等式的右端可得 x2n的系数为(-1)nC2nn
故有(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn
故答案为(-1)nC2nn
点评:本题考查组合数公式的应用,涉及二项式定理的应用,关键要根据题意,充分利用组合数的性质,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网