网址:http://m.1010jiajiao.com/timu_id_484960[举报]
(1)当n=1时,S1=a1显然成立;
(2)假设当n=k时,公式成立,即Sk=ka1+,
当n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)
=(k+1)a1+ d=(k+1)a1+ d,
∴n=k+1时公式成立.
由(1)(2)知,对n∈N*时,公式都成立.
以上证明错误的是( )
A.当n取第一个值1时,证明不对
B.归纳假设的写法不对
C.从n=k到n=k+1时的推理中未用归纳假设
D.从n=k到n=k+1时的推理有错误
查看习题详情和答案>>数列,满足
(1)求,并猜想通项公式。
(2)用数学归纳法证明(1)中的猜想。
【解析】本试题主要考查了数列的通项公式求解,并用数学归纳法加以证明。第一问利用递推关系式得到,,,,并猜想通项公式
第二问中,用数学归纳法证明(1)中的猜想。
①对n=1,等式成立。
②假设n=k时,成立,
那么当n=k+1时,
,所以当n=k+1时结论成立可证。
数列,满足
(1),,,并猜想通项公。 …4分
(2)用数学归纳法证明(1)中的猜想。①对n=1,等式成立。 …5分
②假设n=k时,成立,
那么当n=k+1时,
, ……9分
所以
所以当n=k+1时结论成立 ……11分
由①②知,猜想对一切自然数n均成立
查看习题详情和答案>>
在平面直角坐标系中,已知三个点列,其中,满足向量与向量平行,并且点列在斜率为6的同一直线上,。
证明:数列是等差数列;
试用与表示;
设,是否存在这样的实数,使得在与两项中至少有一项是数列的最小项?若存在,请求出实数的取值范围;若不存在,请说明理由;
若,对于区间[0,1]上的任意l,总存在不小于2的自然数k,当n??k时,恒成立,求k的最小值.
查看习题详情和答案>>