题目内容

用数学归纳法证明1+a+a2+…+an+1= (nN*,a≠1)时,在验证n=1成立时,左边应为某学生在证明等差数列前n项和公式时,证法如下:

(1)当n=1时,S1=a1显然成立;

(2)假设当n=k时,公式成立,即Sk=ka1+,

n=k+1时,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d

n=k+1时公式成立.

由(1)(2)知,对nN*时,公式都成立.

以上证明错误的是(  )

A.当n取第一个值1时,证明不对

B.归纳假设的写法不对

C.从n=kn=k+1时的推理中未用归纳假设

D.从n=kn=k+1时的推理有错误

C?

解析:在此同学的证明过程中,并未使用“假设n=k时,Sk=ka1+”条件,不符合数学归纳法的证明步骤.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网