网址:http://m.1010jiajiao.com/timu_id_481897[举报]
一、 选择题(每小题5分,共60分)
BBDACA CDBDBA
二、填空题(每小题4分,共16分)
13. 14. 15. 16.
三、解答题
17.(本小题满分12分)
解:(Ⅰ)∵,
由,得
两边平方:=,∴= ………………6分
(Ⅱ)∵,
∴,解得,
又∵, ∴,
∴,,
设的夹角为,则,∴
即的夹角为. …………… 12分
18. (本小题满分12分)
解:(Ⅰ)小王在第三次考试中通过而领到驾照的概率为:
………………………6分
(Ⅱ)小王在一年内领到驾照的概率为:
………………12分
19.(本小题满分12分)
(Ⅰ)证明:由已知得,所以,即,
又,,∴, 平面
∴平面平面.……………………………4分(文6分)
(Ⅱ)解:设的中点为,连接,则∥,
∴是异面直线和所成的角或其补角
由(Ⅰ)知,在中,,,
∴.
所以异面直线和所成的角为.…………………8分(文12分)
20.(本小题满分12分)
解:(Ⅰ)∵
据题意,,
∴ ………………………4分
(Ⅱ)由(Ⅰ)知,
∴
则
∴对于,最小值为 ………………… 8分
∵的对称轴为,且抛物线开口向下,
∴时,最小值为与中较小的,
∵,
∴当时,的最小值是-7.
∴的最小值为-11. ………………………12分
21.(本小题满分12分)
解:(Ⅰ)∵
∴
∴
令,则,∴
,∴
∴.……………6分
(Ⅱ)证明:由(Ⅰ)知:
记
用错位相减法求和得:
令,
∵
∴数列是递减数列,∴,
∴.
即.………………………12分
(由证明也给满分)
22.(本小题满分14分)
解:(Ⅰ)①当直线轴时,
则,此时,∴.
(不讨论扣1分)
②当直线不垂直于轴时,,设双曲线的右准线为,
作于,作于,作于且交轴于
根据双曲线第二定义有:,
而到准线的距离为.
由,得:,
∴,∴,∵此时,∴
综上可知.………………………………………7分
(Ⅱ)设:,代入双曲线方程得
∴
令,则,且代入上面两式得:
①
②
由①②消去得
即 ③
由有:,综合③式得
由得,解得
∴的取值范围为…………………………14分
①当b=0,c>0时,方程f(x)=0只有一个实数根;
②当c=0时,y=f(x)是奇函数;
③y= f(x)的图象关于点(0,c)对称;
④函数f(x)至多有两个零点。
上述命题中的所有正确命题的序号是( )。
f(x)=x3,给出下列四个命题:
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上的解析式为f(x)=(2-x)3;
③f(x)图象的对称轴有x=±1;
④f(x)在点(,f())处的切线方程为3x+4y=5;
⑤函数f(x)在R上无最大值。
其中正确命题的序号是( )(写出所有正确命题的序号)。
设函数f(x)=x|x|+bx+c,给出下列四个命题:①当c=0时,f(x)是奇函数;②当b=0,c>0时,方程f(x)=0只有一个实根;③函数f(x)的图象关于点(0,c)对称;④方程f(x)=0至多有两个实根.其中正确命题的个数为
1
2
3
4