摘要:又,且,所以 ---
网址:http://m.1010jiajiao.com/timu_id_474077[举报]
有以下四个命题:
①底面是三角形,其余的各面是全等的等腰三角形的棱锥是正三棱锥;②底面是三角形,侧面和底面所在的平面所成的锐二面角相等的棱锥是正三棱锥;③一个棱锥是正棱锥的充分必要条件是底面多边形既有内切圆,又有外接圆,而且是同心圆;④一个四棱锥是正四棱锥的充分但不必要条件是各侧面是等边三角形.
其中真命题的个数是( )
A.0 B.1 C.2 D.3
查看习题详情和答案>>从以下两个小题中选做一题(只能做其中一个,做两个按得分最低的记分).(甲)一水池有2个进水口,1个出水口,每口进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)
给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的论断序号是________.
(乙)深圳市的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格连续下跌,现有三种价格模拟函数.①f(x)p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p
(以上三式中p,q均为常数,且q>1,x=0表示4月1日,x=1表示5月1日,依次类推).
(1)为准确研究其价格走势,应选________种价格模拟函数.
(2)若f(x)=4,f(2)=6,预测该果品在________月份内价格下跌.
如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40
海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20
海里的位置C.
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
查看习题详情和答案>>
3 |
3 |
(1)求该船的行驶速度(单位:海里/小时);
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
给出以下三个命题,其中所有正确命题的序号为
①已知等差数列{an}的前n项和为Sn,
,
为不共线向量,又
=a1
+a2012
,若
=λ
,则S2012=1006.
②“a=
dx”是函数“y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
③已知函数f(x)=|x2-2|,若f(a)=f(b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1.
查看习题详情和答案>>
①
①
①已知等差数列{an}的前n项和为Sn,
AO |
OB |
OP |
OA |
OB |
PA |
PB |
②“a=
∫ | 1 0 |
1-x2 |
③已知函数f(x)=|x2-2|,若f(a)=f(b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1.
给出以下五个命题,其中所有正确命题的序号为
①函数f(x)=
+2
的最小值为l+2
;
②已知函数f (x)=|x2-2|,若f (a)=f (b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1;
③命题“函数f(x)=xsinx+1,当x1,x2∈[-
,
],且|x1|>|x2|时,有f (x1)>f(x2)”是真命题;
④“a=
dx”是函数“y=cos2(ax)-sin2(ax)的最小正周期为4”的充要条件;
⑤已知等差数列{an}的前n项和为Sn,
,
为不共线向量,又
=a
+a2012
,若
=λ
,则S2012=2013.
查看习题详情和答案>>
①③
①③
①函数f(x)=
x2-2x |
x2-5x+4 |
2 |
②已知函数f (x)=|x2-2|,若f (a)=f (b),且0<a<b,则动点P(a,b)到直线4x+3y-15=0的距离的最小值为1;
③命题“函数f(x)=xsinx+1,当x1,x2∈[-
π |
2 |
π |
2 |
④“a=
∫ | 1 0 |
1-x2 |
⑤已知等差数列{an}的前n项和为Sn,
OA |
OB |
OP |
OA |
OB |
PA |
PB |