摘要:解:⑴由.得-------1分 由且得-------2分
网址:http://m.1010jiajiao.com/timu_id_472884[举报]
(满分16分)已知定义域为的函数同时满足以下三个条件时,称为“友谊函数”,
[1] 对任意的,总有; [2] ;
[3] 若,,且,则有成立。
请解答下列各题:
(1)若已知为“友谊函数”,求的值;
(2)函数在区间上是否为“友谊函数”?并给出理由.
(3)已知为“友谊函数”,假定存在,使得且,求证:.
查看习题详情和答案>>.(本题满分13分)设函数,方程f(x)=x有唯一的解,
已知f(xn)=xn+1(n∈N﹡)且f(xl)=.
(1)求证:数列{)是等差数列;
(2)若,求Sn=b1+b2+b3+…+bn
(3)在(2)的条件下,是否存在最小正整数m,使得对任意n∈N﹡,有成立,若存在,求出m的值;若不存在,请说明理由。
查看习题详情和答案>>
已知函数,
(1)求函数的定义域;
(2)求函数在区间上的最小值;
(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.
【解析】第一问中,利用由 即
第二问中,,得:
,
第三问中,由在函数的定义域上 的任意,,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。
解:(1)由 即
(2),得:
,
(3)由在函数的定义域上 的任意,,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以
当命题p为真,命题q为假时,
当命题p为假,命题q为真时,,
所以
查看习题详情和答案>>
已知椭圆C:
+
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
+
=1以抛物线y2=4
x的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
y异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由. 查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
3 |
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1 |
mn |
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由. 查看习题详情和答案>>