摘要:如图.在底面为直角梯形的四棱锥S-ABCD中.∠ABC=900.SA⊥平面ABCD.SA=2.AB=BC=2AD=2.(Ⅰ)求证:BC⊥平面SAB,(Ⅱ) 求平面SCD与平面SAB所成二面角的正弦值, (Ⅲ)若E为SC上异于S.C的任意一点.问在SD上是否存在一点F.使AF∥平面BED?试说明理由. 已知是离心率为的椭圆的两个焦点.A为椭圆的一个短轴端点.且 .(Ⅰ)求椭圆方程,(Ⅱ)过点P(0.2)的直线L1交椭圆于C.D两点.求的取值范围. 由原点O向曲线引切线.切于不同于O的点P1(x1.y1).再由点P1引此曲线的切线.切于不同于P1的点P2(x2.y2).如此继续下去.得到点列{Pn(xn.yn)} .(I)求,(Ⅱ)求证:数列为等比数列,(Ⅲ)令. 为数列{}的前项的和.若对恒成立.求的取值范围. 宿迁市2005-2006学年度高三年级第四次考试

网址:http://m.1010jiajiao.com/timu_id_4724[举报]

说明

1、  本解答仅给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容对照评分标准制定相应的评分细则。

2、  评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半,如果后续部分的解答有较严重的错误,就不给分。

3、  解答右端所注分数,表示考生正确做到这一步应得的累加分数。

4、  给分或扣分以1分为单位,选择题和填空题不给中间分。

 

一、选择题:本题考查基本知识和基本运算。每小题5分,满分50分。

1.B   2.C   3.B     4.A    5.A    6.C   7.D    8.B  9.D  10.C

 

二、填空题:本题考查基本知识和基本运算。每小题5分,满分30分。

11.; 12.; 13.;  14.;  15.;  16.6

 

三、解答题

17、      

       

                       -----------------------------------------------3分

令 知    ,  .  

故函数的图象的对称中心的坐标为 ()  ------------6分

(II)由     得

  平方得                          -------------------------9分

又   故    ,

      ∴

      即                        --------------------------------------12分

 

 

18、(Ⅰ)设“甲恰好负两局”的事件为A,“甲恰好胜三局”的事件为B.则

P(A)=,           ---------------------------------3分

∵P(A)≤P(B)  ∴≤,解得P≥

由0<P<1,得                             --------------------------------5分

 (Ⅱ)设“四局比赛后未结束比赛”的事件为C

四局比赛后未结束比赛包含甲3:1领先乙,甲2:2平乙,乙3:1领先甲---------7分

∴        -------------------------9分

       =

       =                                            -----------------------11分

答:四局比赛后未结束比赛的概率为。                  -----------------------12分

或:=

19、(Ⅰ)∵SA⊥面ABCD   ∴SA⊥BC

   ∵∠ABC=900      ∴AB⊥BC

   故BC⊥平面SAB         -----------------3分

(Ⅱ) 延长CD、BA交于点P,连接SP

   则SP为平面SCD与平面SAB的交线 

                    ----------------------------5分

由条件计算可得∠BSP=900 

   由(Ⅰ) BC⊥平面SAB

   故SC⊥SP

   ∴∠CSB就是平面SCD与平面SAB

所成的二面角的平面角

-----------------------------7分

      在Rt△CSB中sin∠CSB=

∴平面SCD与平面SAB所成的二面角的正弦值为       ---------------------9分                         

(Ⅲ) 答:在SD上存在点F,使得DF∥平面BED。---------------------10分

连接AC与BD交于点O,连接OE,

    在三角形SAC中,过点A作AM∥OE设交SC于点M,---------------------12分

在三角形SDC中过点M作ED的平行线与SD交于F,连接AF

    则面AMF∥面EBD

    又AF平面EBD,故AF平面BED

  ∴在SD上是存在一点F,使AF平面BED      ----------------------------14分

 

20、(Ⅰ) 设椭圆方程为(a>b>0)

   由e==得a2=3b2,                  ---------------------------------------------2分

故椭圆方程为,

,A(0,b)

         ------------------------------4分

    ∴

 ∴椭圆方程为                 ------------------------------7分

(Ⅱ)设,显然≠1,由于与同向,故=-----------8分

 设,D(m,n),则(x0,y0-2)= (m,n-2)

 ∴                     ------------------------------10分

由C、D在椭圆上得

消去m得,      --------------------13分

又∵   ∴  解得

故的取值范围是                 ------------------------16分

21、(Ⅰ)                       --------------------------------------1分

过切点P1(x1,y1)的切线方程为

由于切线过原点O,因此

解得                                -------------------------------------4分

   (Ⅱ) 过切点Pn+1(xn+1,yn+1)的切线方程为

由于切线过点Pn(xn,yn),因此-- ---6分

化简得,∴     -------------------------------8分

即,

∴数列是以为首项,公比为的等比数列。  ---------------9分

    (Ⅲ)由(Ⅱ)得=

                                   ------------------------------------11分

令,由错位相减可求得

                                  -----------------------------13分

∴=,由单调性得   ∴

要使对恒成立, 故

∴的取值范围是。----------------------------------16分                                    

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网