摘要:.整理得..
网址:http://m.1010jiajiao.com/timu_id_467207[举报]
.设是公差不为零的等差数列,为其前项和,满足:且成等比数列.
(I)求数列的通项公式;
(II)设数列满足:,,为数列的前项和,问是否存在正整数,使得成立?若存在,求出;若不存在,请说明理由.
查看习题详情和答案>>
.(本题满分18分)
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设二次函数,对任意实数,有恒成立;数列满足.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当时,数列在这个区间上是递增数列,
并说明理由;
(3)已知,是否存在非零整数,使得对任意,都有
恒成立,若存在,
求之;若不存在,说明理由.
查看习题详情和答案>>