摘要:18. 已知两直线.并且与垂直. (1)求的值, (2)当的倾斜角为锐角时.求过与的交点并且与直线平行的直线方程.
网址:http://m.1010jiajiao.com/timu_id_4462696[举报]
.(本小题满分12分)
已知椭圆
的中心在坐标原点,焦点在
轴上,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.
查看习题详情和答案>>
(本小题满分12分)
已知椭圆
的中心在坐标原点,焦点在
轴上,该椭圆经过点
,且离心率为
.
(1)求椭圆
的标准方程;
(2)若直线
与椭圆
相交
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.
本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.![]()
(I)设
,求
与
的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由