题目内容


(本小题满分12分)
如图,已知椭圆C1的中心在圆点O,长轴左、右端点M、N在x轴上,椭圆C1的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1于两点,与C1交于两点,这四点按纵坐标从大到小依次为A、B、C、D.

(I)设e=,求|BC|与|AD|的比值;
(II)当e变化时,是否存在直线l,使得BO//AN,并说明理由.

(II)t=0时的l不符合题意,t≠0时,BO//AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即

解得
因为,又,所以,解得
所以当时,不存在直线l,使得BO//AN;当时,存在直线l使得BO//AN。

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网