摘要:解答数学应用题的关键有两点: 一是认真读题.缜密审题.确切理解题意.明确问题的实际背景.然后进行科学的抽象概括.将实际问题归纳为相应的数学问题, 二是要合理的选取参变数.设定变元后就要寻找它们之间的内在联系.选用恰当的代数式表示问题中的关系.处理相应的函数.方程.不等式等数学模型,最终求解数学模型使实际问题得到解决. 一般的解题程序是: 读题 建模 求解 反馈
网址:http://m.1010jiajiao.com/timu_id_4429607[举报]
(2008•奉贤区二模)如图,在正四棱柱ABCD-A1B1C1D1中,AB=4,AA1=8.
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.
查看习题详情和答案>>
(1)求异面直线B1C与A1C1所成角的大小;(用反三角函数形式表示)
(2)若E是线段DD1上(不包含线段的两端点)的一个动点,请提出一个与三棱锥体积有关的数学问题(注:三棱锥需以点E和已知正四棱柱八个顶点中的三个为顶点构成);并解答所提出的问题.
从某校参加数学竞赛的同学的试卷中抽取一个样本,考察竞赛的成绩分布,将样本分成6组,绘成如下频率分布直方图,从左到右各小组的小矩形的高的比为1:1:3:6:4:2,最右边一组的频数是8,请结合直方图的信息,解答下列问题:
(1)样本容量是多少?
(2)成绩落在哪个范围的人数最多?并求出该小组的频数、频率;
(3)估计参加数学竞赛同学的平均成绩.
查看习题详情和答案>>
(1)样本容量是多少?
(2)成绩落在哪个范围的人数最多?并求出该小组的频数、频率;
(3)估计参加数学竞赛同学的平均成绩.
(2009•普宁市模拟)为了了解六校联合体中某一学校学生的学习情况,现从该校文科考生中抽取考生若干人,分析其联考的文科数学成绩.将取得数据整理并画出频率分布直方图(如图所示).已知从左到右第一分数段的频率为0.03,第二分数段的频率为0.06,第四分数段的频率为0.12,第五分数段的频率为0.10,第六分数段的频率为0.27,且第四分数段的频数为12.根据条件解答下列问题:
(Ⅰ)从该校文科考生中抽取了多少人?
(Ⅱ)哪些分数段出现的学生人数一样多?出现学生人数最多的分数段为多少人?
(Ⅲ)若分数在90分以上(含90分)的为及格,试估计这个学校学生在这次考试数学成绩的及格率.
查看习题详情和答案>>
(Ⅰ)从该校文科考生中抽取了多少人?
(Ⅱ)哪些分数段出现的学生人数一样多?出现学生人数最多的分数段为多少人?
(Ⅲ)若分数在90分以上(含90分)的为及格,试估计这个学校学生在这次考试数学成绩的及格率.
已知抛物线C:y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1.
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为
,求侧棱长”;也可以是“若正四棱锥的体积为
,求所有侧面面积之和的最小值”.
现有正确命题:过点A(-
,0)的直线交抛物线C:y2=2px(p>0)于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F.
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.
查看习题详情和答案>>
(1)求抛物线C的方程;
(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;
(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.
例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积
16 |
3 |
16 |
3 |
16 |
3 |
现有正确命题:过点A(-
p |
2 |
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题.