摘要:15.习惯上所称的“街坊 指的是邻居.在唐都长安的布局中也有“坊 .你认为应指 A.商业区 B.手工业集中区 C.中央官署办公区 D.住宅区
网址:http://m.1010jiajiao.com/timu_id_4423239[举报]
(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
和e2=
.
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
(θ为参数),C2的参数方程为
(t为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
的定义域为R,求实数m的取值范围.
查看习题详情和答案>>
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
|
|
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
|
|
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
| 1 |
| f(x)+m |
(2013•湖南模拟)已知向量
=(sinx,2co
x),
=(2
cosx,-1),函数f(x)=
•
+1.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上所有点的纵坐标保持不变,横坐标缩短到原来的
倍;再把所得到的图象向左平移
个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间[-
,
]上的值域.
查看习题详情和答案>>
| a |
| s | 2 |
| b |
| 3 |
| a |
| b |
(1)求函数f(x)的最小正周期和单调递增区间;
(2)将函数y=f(x)的图象上所有点的纵坐标保持不变,横坐标缩短到原来的
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |