摘要:1.在复习中首先把握基础性知识.深刻理解本单元的基本知识点.基本数学思想和基本数学方法.重点掌握集合.充分条件与必要条件的概念和运算方法.要真正掌握数形结合思想--用文氏图解题.
网址:http://m.1010jiajiao.com/timu_id_4420296[举报]
出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
和
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
,则存在唯一的一对实数λ,μ,使得
=λ
+μ
,我们就把实数对(λ,μ)称作向量
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
和
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
,
>=
,
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
和
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
e1 |
e2 |
a |
a |
e1 |
e2 |
a |
i |
j |
i |
j |
π |
3 |
(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i |
j |
a |
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式. 查看习题详情和答案>>
某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是
,请问:商场应将每次中奖奖金数额m最高定为多少元,才能使促销方案对商场有利?
查看习题详情和答案>>
(1)试求选出的3种商品中至少有一种是日用商品的概率;
(2)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为m的奖金.假设顾客每次抽奖时获奖与否的概率都是
1 | 2 |
(2010•青岛一模)某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.
(Ⅰ)试求选出的3种商品中至多有一种是家电商品的概率;
(Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高x元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为40元的奖券.假设顾客每次抽奖时获奖的概率都是
,若使促销方案对商场有利,则x最少为多少元?
查看习题详情和答案>>
(Ⅰ)试求选出的3种商品中至多有一种是家电商品的概率;
(Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高x元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为40元的奖券.假设顾客每次抽奖时获奖的概率都是
1 | 2 |
圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知椭圆C:
+y2=1.
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
+
=1(a>b>0),MN是任意一条垂直于x轴的垂轴弦,其它条件不变,试探究xE?xF是否为定值?(不需要证明);请你给出双曲线
-
=1(a>0,b>0)中相类似的结论,并证明你的结论.
查看习题详情和答案>>
x2 |
4 |
(1)过椭圆C的右焦点作一条垂直于x轴的垂轴弦MN,求MN的长度;
(2)若点P是椭圆C上不与顶点重合的任意一点,MN是椭圆C的短轴,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0)(如图),求xE?xF的值;
(3)在(2)的基础上,把上述椭圆C一般化为
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |