摘要: 解:(1)分别过D.C两点作DG⊥AB于点G.CH⊥AB于点H. -----1分 ∵ AB∥CD. ∴ DG=CH.DG∥CH. ∴ 四边形DGHC为矩形.GH=CD=1. ∵ DG=CH.AD=BC.∠AGD=∠BHC=90°. ∴ △AGD≌△BHC(HL). ∴ AG=BH==3. ---2分 ∵ 在Rt△AGD中.AG=3.AD=5. ∴ DG=4. ∴ . ------------------3分 (2)∵ MN∥AB.ME⊥AB.NF⊥AB. ∴ ME=NF.ME∥NF. ∴ 四边形MEFN为矩形. ∵ AB∥CD.AD=BC. ∴ ∠A=∠B. ∵ ME=NF.∠MEA=∠NFB=90°. ∴ △MEA≌△NFB(AAS). ∴ AE=BF. --------4分 设AE=x.则EF=7-2x. -----5分 ∵ ∠A=∠A.∠MEA=∠DGA=90°. ∴ △MEA∽△DGA. ∴ . ∴ ME=. --------------------6分 ∴ . --------8分 当x=时.ME=<4.∴四边形MEFN面积的最大值为.-----9分 (3)能. -------------------------10分 由(2)可知.设AE=x.则EF=7-2x.ME=. 若四边形MEFN为正方形.则ME=EF. 即 7-2x.解.得 . ---------------11分 ∴ EF=<4. ∴ 四边形MEFN能为正方形.其面积为.

网址:http://m.1010jiajiao.com/timu_id_4412360[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网