摘要:定义在上的函数.给出下列四个命题:
网址:http://m.1010jiajiao.com/timu_id_431351[举报]
给出下列四个命题:
①?α>β,使得tanα<tanβ;
②若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(
,
),则f(sinθ)>f(cosθ);
③在△ABC中,“A>
”是“sinA>
”的充要条件;
④若函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=
x+2.则f(1)+f′(1)=3
其中所有正确命题的序号是 .
查看习题详情和答案>>
①?α>β,使得tanα<tanβ;
②若f(x)是定义在[-1,1]上的偶函数,且在[-1,0]上是增函数,θ∈(
π |
4 |
π |
2 |
③在△ABC中,“A>
π |
6 |
1 |
2 |
④若函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=
1 |
2 |
其中所有正确命题的序号是
给出下列四个命题:
①若函数f(x)=a(x3-x)在区间(-
,
)为减函数,则a>0;
②函数f(x)=lg(ax+1)的定义域是{x|x>-
};
③当x>0且x≠1时,有lnx+
≥2;
④若M是圆(x-5)2+(y+2)2=34上的任意一点,则点M关于直线y=ax-5a-2的对称点M′也在该圆上.
所有正确命题的序号是
查看习题详情和答案>>
①若函数f(x)=a(x3-x)在区间(-
| ||
3 |
| ||
3 |
②函数f(x)=lg(ax+1)的定义域是{x|x>-
1 |
a |
③当x>0且x≠1时,有lnx+
1 |
lnx |
④若M是圆(x-5)2+(y+2)2=34上的任意一点,则点M关于直线y=ax-5a-2的对称点M′也在该圆上.
所有正确命题的序号是
给出下列四个命题:
①“向量
,
的夹角为锐角”的充要条件是“
•
>0”;
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
)>
;
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是 .(请写出所有真命题的序号)
查看习题详情和答案>>
①“向量
a |
b |
a |
b |
②如果f(x)=lgx,则对任意的x1、x2∈(0,+∞),且x1≠x2,都有f(
x1+x2 |
2 |
f(x1)+f(x2) |
2 |
③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];
④记函数y=f(x)的反函数为y=f-1(x),要得到y=f-1(1-x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f-1(1-x)的图象.
其中真命题的序号是