摘要:∴当n=1时.有.解得a1=1或2 ------1
网址:http://m.1010jiajiao.com/timu_id_430261[举报]
试比较nn+1与(n+1)n(n∈N*)的大小.
当n=1时,有nn+1 (n+1)n(填>、=或<);
当n=2时,有nn+1 (n+1)n(填>、=或<);
当n=3时,有nn+1 (n+1)n(填>、=或<);
当n=4时,有nn+1 (n+1)n(填>、=或<);
猜想一个一般性的结论,并加以证明. 查看习题详情和答案>>
当n=1时,有nn+1
当n=2时,有nn+1
当n=3时,有nn+1
当n=4时,有nn+1
猜想一个一般性的结论,并加以证明. 查看习题详情和答案>>
当n=1时,有(a-b)(a+b)=a2-b2;当n=2时,有(a-b)(a2+ab+b2)=a3-b3;当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4;当n=4时,有(a-b)(a4+a3b+a2b2+ab3+b4)=a5-b5;当n∈N*时,可归纳出的结论是
查看习题详情和答案>>
(a-b)(an+an-1b+…+abn-1+bn)=an+1-bn+1
(a-b)(an+an-1b+…+abn-1+bn)=an+1-bn+1
.已知函数f(x)的定义域为[0,1],且同时满足:①f(1)=3;②f(x)≥2对一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,则有f(x1+x2)≥f(x1)+f(x2)-2
(1)求f(0)的值
(2)设s,t∈[0,1],且s<t,求证:f(s)≤f(t)
(3)试比较f(
)与
+2(n∈N)的大小;
(4)某同学发现,当x=
(n∈N)时,有f(x)<2x+2,由此他提出猜想:对一切x∈(0,1],都有f(x)<2x+2,请你判断此猜想是否正确,并说明理由.
查看习题详情和答案>>
(1)求f(0)的值
(2)设s,t∈[0,1],且s<t,求证:f(s)≤f(t)
(3)试比较f(
1 |
2n |
1 |
2n |
(4)某同学发现,当x=
1 |
2n |