ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ[0£¬1]£¬ÇÒͬʱÂú×㣺¢Ùf£¨1£©=3£»¢Úf£¨x£©¡Ý2¶ÔÒ»ÇÐx¡Ê[0£¬1]ºã³ÉÁ¢£»¢ÛÈôx1¡Ý0£¬x2¡Ý0£¬x1+x2¡Ü1£¬ÔòÓÐf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©-2
£¨1£©Çóf£¨0£©µÄÖµ
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬ÇóÖ¤£ºf£¨s£©¡Üf£¨t£©
£¨3£©ÊԱȽÏf(
)Óë
+2£¨n¡ÊN£©µÄ´óС£»
£¨4£©Ä³Í¬Ñ§·¢ÏÖ£¬µ±x=
£¨n¡ÊN£©Ê±£¬ÓÐf£¨x£©£¼2x+2£¬ÓÉ´ËËûÌá³ö²ÂÏ룺¶ÔÒ»ÇÐx¡Ê£¨0£¬1]£¬¶¼ÓÐf£¨x£©£¼2x+2£¬ÇëÄãÅжϴ˲ÂÏëÊÇ·ñÕýÈ·£¬²¢ËµÃ÷ÀíÓÉ£®
£¨1£©Çóf£¨0£©µÄÖµ
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬ÇóÖ¤£ºf£¨s£©¡Üf£¨t£©
£¨3£©ÊԱȽÏf(
1 |
2n |
1 |
2n |
£¨4£©Ä³Í¬Ñ§·¢ÏÖ£¬µ±x=
1 |
2n |
·ÖÎö£º£¨1£©ÓÉ¢Û£¬Áîx1=x2=0£¬½áºÏf£¨0£©¡Ý2¿ÉÇóf£¨0£©µÄÖµ
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬Ôòt-s¡Ê[0£¬1]£®´Ó¶øf£¨t£©=f[£¨t-s£©+s]¡Ýf£¨t-s£©+f£¨s£©-2£¬¹Êf£¨t£©-f£¨s£©¡Ýf£¨t-s£©-2¡Ý0£®¿ÉµÃf£¨t£©¡Ýf£¨s£©£®
£¨3£©ÌâÖÐÌõ¼þ£ºf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©-2£¬Áîx1=x2=
£¬µÃ f(
)¡Ý2f(
)-2£¬ÀûÓÃËü½øÐзÅËõ£¬¿ÉÖ¤µÃ´ð°¸£¬
£¨4£©ÒòΪÓÉÌâÒâ¿ÉµÃ£º¶Ôx¡Ê[0£¬1]£¬×Ü´æÔÚn¡ÊN£¬Âú×ã
£¼x¡Ü
£®½áºÏ£¨I£©¡¢£¨II£©¿ÉÖ¤µÃ£¨III£©£®
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬Ôòt-s¡Ê[0£¬1]£®´Ó¶øf£¨t£©=f[£¨t-s£©+s]¡Ýf£¨t-s£©+f£¨s£©-2£¬¹Êf£¨t£©-f£¨s£©¡Ýf£¨t-s£©-2¡Ý0£®¿ÉµÃf£¨t£©¡Ýf£¨s£©£®
£¨3£©ÌâÖÐÌõ¼þ£ºf£¨x1+x2£©¡Ýf£¨x1£©+f£¨x2£©-2£¬Áîx1=x2=
1 |
2n |
1 |
2n-1 |
1 |
2n |
£¨4£©ÒòΪÓÉÌâÒâ¿ÉµÃ£º¶Ôx¡Ê[0£¬1]£¬×Ü´æÔÚn¡ÊN£¬Âú×ã
1 |
2n+1 |
1 |
2n |
½â´ð£º½â£º£¨1£©ÓÉ¢Û£¬Áîx1=x2=0£¬f£¨0£©¡Ýf£¨0£©+f£¨0£©-2£¬¡àf£¨0£©¡Ü2
ÓÖf£¨0£©¡Ý2£¬Ôòf£¨0£©=2£»
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬Ôòt-s¡Ê[0£¬1]£®
¡àf£¨t£©=f[£¨t-s£©+s]¡Ýf£¨t-s£©+f£¨s£©-2£®
¡àf£¨t£©-f£¨s£©¡Ýf£¨t-s£©-2¡Ý0£®¡àf£¨t£©¡Ýf£¨s£©£®
£¨3£©ÔÚ¢ÛÖУ¬Áîx1=x2=
£¬µÃ f(
)¡Ý2f(
)-2£¨8·Ö£©
¡àf(
)-2¡Ü
[f(
)-2]¡Ü
[f(
)-2]¡Ü
[f(
)-2]=
Ôò f(
)¡Ü
+2£® £¨11·Ö£©
£¨¢ó£©¶Ôx¡Ê[0£¬1]£¬×Ü´æÔÚn¡ÊN£¬Âú×ã
£¼x¡Ü
£® £¨13·Ö£©
ÓÉ£¨¢ñ£©Ó루¢ò£©£¬µÃ f(x)¡Üf(
)¡Ü
+2£¬ÓÖ2x+2£¾2•
+2=
+2£®
¡àf£¨x£©£¼x+2£®
×ÛÉÏËùÊö£¬¶ÔÈÎÒâx¡Ê[0£¬1]£®f£¨x£©£¼x+2ºã³ÉÁ¢£® £¨16·Ö£©
ÓÖf£¨0£©¡Ý2£¬Ôòf£¨0£©=2£»
£¨2£©Éès£¬t¡Ê[0£¬1]£¬ÇÒs£¼t£¬Ôòt-s¡Ê[0£¬1]£®
¡àf£¨t£©=f[£¨t-s£©+s]¡Ýf£¨t-s£©+f£¨s£©-2£®
¡àf£¨t£©-f£¨s£©¡Ýf£¨t-s£©-2¡Ý0£®¡àf£¨t£©¡Ýf£¨s£©£®
£¨3£©ÔÚ¢ÛÖУ¬Áîx1=x2=
1 |
2n |
1 |
2n-1 |
1 |
2n |
¡àf(
1 |
2n |
1 |
2 |
1 |
2n-1 |
1 |
22 |
1 |
2n-2 |
1 |
2n |
1 |
2n-n |
1 |
2n |
Ôò f(
1 |
2n |
1 |
2n |
£¨¢ó£©¶Ôx¡Ê[0£¬1]£¬×Ü´æÔÚn¡ÊN£¬Âú×ã
1 |
2n+1 |
1 |
2n |
ÓÉ£¨¢ñ£©Ó루¢ò£©£¬µÃ f(x)¡Üf(
1 |
2n |
1 |
2n |
1 |
2n+1 |
1 |
2n |
¡àf£¨x£©£¼x+2£®
×ÛÉÏËùÊö£¬¶ÔÈÎÒâx¡Ê[0£¬1]£®f£¨x£©£¼x+2ºã³ÉÁ¢£® £¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÁ˳éÏóº¯Êý£¬³éÏóº¯ÊýÊÇÏà¶ÔÓÚ¸ø³ö¾ßÌå½âÎöʽµÄº¯ÊýÀ´ËµµÄ£¬ËüËäȻûÓоßÌåµÄ±í´ïʽ£¬µ«ÊÇÓÐÒ»¶¨µÄ¶ÔÓ¦·¨Ôò£¬Âú×ãÒ»¶¨µÄÐÔÖÊ£¬ÕâÖÖ¶ÔÓ¦·¨Ôò¼°º¯ÊýµÄÏàÓ¦µÄÐÔÖÊÊǽâ¾öÎÊÌâµÄ¹Ø¼ü£®³éÏóº¯ÊýµÄ³éÏóÐÔ¸³ÓèËü·á¸»µÄÄÚººÍ¶à±äµÄ˼ά¼ÛÖµ£¬¿ÉÒÔ¿¼²éÀà±È²Â²â£¬ºÏÇéÍÆÀíµÄ̽¾¿ÄÜÁ¦ºÍ´´Ð¾«Éñ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿