网址:http://m.1010jiajiao.com/timu_id_41671[举报]
一、选择题:
ADBAA BCCDC
二、填空题:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答题:
16.解:(Ⅰ)
…………5分
由成等比数列,知不是最大边
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通过检查的概率为, ………………………2分
第二天通过检查的概率为, …………………………4分
由相互独立事件得两天全部通过检查的概率为. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为, …………8分
第二天通过而第一天不通过检查的概率为, ………………10分
由互斥事件得恰有一天通过检查的概率为. ……………………12分
18.解:方法一
(Ⅰ)取的中点,连结,由知,又,故,所以即为二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.
故. …(12分)
19.解:(Ⅰ)设
则 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:
相减得:
∴
相减得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴椭圆的标准方程为. ………(3分)
当的斜率为0时,显然=0,满足题意,
当的斜率不为0时,设方程为,
代入椭圆方程整理得:.
,,.
则
,
而
∴,从而.
综合可知:对于任意的割线,恒有. ………(8分)
(Ⅱ),
即:,
当且仅当,即(此时适合于的条件)取到等号.
∴三角形△ABF面积的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
雅礼中学08届高三第八次质检数学(文科)试题参考答案
一、选择题:
ADBAA BCCDC
二、填空题:
11. ; 12. ; 13.
14(i) ③⑤ (ii) ②⑤ 15.(i)7; (ii).
三、解答题:
16.解:(Ⅰ)
…………5分
由成等比数列,知不是最大边
…………6分
(Ⅱ)由余弦定理
得ac=2 …………11分
= …………12分
17.解:(Ⅰ)第一天通过检查的概率为, ………………………2分
第二天通过检查的概率为, …………………………4分
由相互独立事件得两天全部通过检查的概率为. ………………6分
(Ⅱ)第一天通过而第二天不通过检查的概率为, …………8分
第二天通过而第一天不通过检查的概率为, ………………10分
由互斥事件得恰有一天通过检查的概率为. ……………………12分
18.解:方法一
(Ⅰ)取的中点,连结,由知,又,故,所以即为二面角的平面角.
在△中,,,,
由余弦定理有
,
所以二面角的大小是. (6分)
(Ⅱ)由(Ⅰ)知道平面,故平面平面,故在平面上的射影一定在直线上,所以点到平面的距离即为△的边上的高.
故. …(12分)
19.解:(Ⅰ)设
则 ……①
……②
∴②-①得 2d2=0,∴d=p=0
∴ …………6分
(Ⅱ)当an=n时,恒等式为[S(1,n)]2=S(3,n)
证明:
相减得:
∴
相减得:
又
又
∴ ………………………………13分
20.解:(Ⅰ)∵,∴,
又∵,∴,
∴,
∴椭圆的标准方程为. ………(3分)
当的斜率为0时,显然=0,满足题意,
当的斜率不为0时,设方程为,
代入椭圆方程整理得:.
,,.
则
,
而
∴,从而.
综合可知:对于任意的割线,恒有. ………(8分)
(Ⅱ),
即:,
当且仅当,即(此时适合于的条件)取到等号.
∴三角形△ABF面积的最大值是. ………………………………(13分)
21.解:(Ⅰ) ……………………………………………4分
(Ⅱ)或者……………………………………………8分
(Ⅲ)略 ……………………………………13分
(本小题满分12分)
某车间在两天内,每天生产10件某产品,其中第一天、第二天分别生产出了1件、2
件次品.而质检部门每天要从生产的10件产品中随意抽取4件进行检查,若发现有次
品,则当天的产品不能通过.
(Ⅰ)求第一天产品通过检查的概率;w.w.w.k.s.5.u.c.o.m
(Ⅱ)求两天全部通过的概率.
查看习题详情和答案>>(本小题满分12分)
某车间在三天内,每天生产件某产品,其中第一天、第二天、第三天分别生产出了件、件、件次品,质检部门每天要从生产的件产品中随机抽取件进行检测,若发现其中有次品,则当天的产品不能通过.
(1)求第一天的产品通过检测的概率;
(2)求这三天内,恰有两天能通过检测的概率.
查看习题详情和答案>>(本小题满分12分)
某车间在三天内,每天生产件某产品,其中第一天、第二天、第三天分别生产出了件、件、件次品,质检部门每天要从生产的件产品中随机抽取件进行检测,若发现其中有次品,则当天的产品不能通过.
(1)求第一天的产品通过检测的概率;
(2)求这三天内,恰有两天能通过检测的概率.
查看习题详情和答案>>(本小题满分12分)某车站每天上午发出两班客车,第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求: (1)请预测旅客乘到第一班客车的概率; (2)旅客候车时间的分布列; (3)旅客候车时间的数学期望.
查看习题详情和答案>>(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(月日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 汽车行 驶路线 | 不堵车的情况下到达亚运村乙所需时间 (天) | 堵车的情况下到达亚运村乙所需时间 (天) | 堵车的 概率 | 运费 (万元) |
公路1 | 2 | 3 | ||
公路2 | 1 | 4 |
(注:毛利润销售商支付给菜园的费用运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求的分布列和数学期望;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多? 查看习题详情和答案>>