摘要:∴ 令y=1.可得n1=.-------------7分
网址:http://m.1010jiajiao.com/timu_id_39552[举报]
14、(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式两边对x求导后令x=1,可得结论:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解题思路,可得到许多结论.试问:Cn0+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=
查看习题详情和答案>>
(n+2)2n-1
.观察下列问题:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013,
请仿照这种“赋值法”,求出
+
+
+…+
=
查看习题详情和答案>>
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013,
请仿照这种“赋值法”,求出
a1 |
2 |
a2 |
22 |
a3 |
23 |
a2013 |
22013 |
-1
-1
.
观察下列问题:
已知(1-2x)2013=a+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a=1,
令x=1,可得a+a1+a2+a3+…+a2013=2013=-1,
令x=-1,可得a-a1+a2+a3+…-a2013=2013=32013,
请仿照这种“赋值法”,求出 = . 查看习题详情和答案>>
已知(1-2x)2013=a+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a=1,
令x=1,可得a+a1+a2+a3+…+a2013=2013=-1,
令x=-1,可得a-a1+a2+a3+…-a2013=2013=32013,
请仿照这种“赋值法”,求出 = . 查看习题详情和答案>>