摘要:当时..此时函数递减,
网址:http://m.1010jiajiao.com/timu_id_390987[举报]
设函数.
(Ⅰ) 当时,求
的单调区间;
(Ⅱ) 若在
上的最大值为
,求
的值.
【解析】第一问中利用函数的定义域为(0,2),
.
当a=1时,所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),
.
(1)当时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>
设函数,其中
为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点
(其中
)处的切线为
,
与
轴、
轴所围成的三角形面积为
,求
的最大值.
【解析】第一问利用由已知,所以
,
由,得
,
所以,在区间
上,
,函数
在区间
上单调递减;
在区间
上,
,函数
在区间
上单调递增;
第二问中,因为,所以曲线
在点
处切线为
:
.
切线与
轴的交点为
,与
轴的交点为
,
因为,所以
,
, 在区间
上,函数
单调递增,在区间
上,函数
单调递减.所以,当
时,
有最大值,此时
,
解:(Ⅰ)由已知,所以
,
由
,得
, 所以,在区间
上,
,函数
在区间
上单调递减;
在区间上,
,函数
在区间
上单调递增;
即函数的单调递减区间为
,单调递增区间为
.
(Ⅱ)因为,所以曲线
在点
处切线为
:
.
切线与
轴的交点为
,与
轴的交点为
,
因为,所以
,
, 在区间
上,函数
单调递增,在区间
上,函数
单调递减.所以,当
时,
有最大值,此时
,
所以,的最大值为
查看习题详情和答案>>
探究函数f(x)=x+
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数f(x)=x+
(x>0)在区间(0,2)上递减,函数f(x)=x+
(x>0)在区间 上递增;
(2)函数f(x)=x+
(x>0),当x= 时,y最小= ;
(3)函数f(x)=x+
(x<0)时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
查看习题详情和答案>>
4 |
x |
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | … |
(1)函数f(x)=x+
4 |
x |
4 |
x |
(2)函数f(x)=x+
4 |
x |
(3)函数f(x)=x+
4 |
x |