网址:http://m.1010jiajiao.com/timu_id_390924[举报]
已知向量,且,A为锐角,求:
(1)角A的大小;
(2)求函数的单调递增区间和值域.
【解析】第一问中利用,解得 又A为锐角
第二问中,
由 解得单调递增区间为
解:(1) ……………………3分
又A为锐角
……………………5分
(2)
……………………8分
由 解得单调递增区间为
……………………10分
查看习题详情和答案>>
f(x1)+f(x2) |
2 |
(1)判断函数f(x)=x+1,x∈[-1,3]是否为“和谐函数”?答:
(2)请先学习下面的证明方法:
证明:函数g(x)=lgx,x∈[10,100]为“和谐函数”,
3 |
2 |
证明过程如下:对任意x1∈[10,100],令
g(x1)+g(x2) |
2 |
3 |
2 |
lgx1+lgx2 |
2 |
3 |
2 |
得x2=
1000 |
x1 |
1000 |
x1 |
1000 |
x1 |
g(x)+g(x2) |
2 |
3 |
2 |
3 |
2 |
参照上述证明过程证明:函数h(x)=2x,x∈(1,3)为“和谐函数”;
(3)写出一个不是“和谐函数”的函数,并作出证明.
把函数的图象按向量平移得到函数的图象.
(1)求函数的解析式; (2)若,证明:.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。
(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分
(2) 证明:令,……6分
则……8分
,∴,∴在上单调递增.……10分
故,即
查看习题详情和答案>>
设函数.
(I)求的单调区间;
(II)当0<a<2时,求函数在区间上的最小值.
【解析】第一问定义域为真数大于零,得到..
令,则,所以或,得到结论。
第二问中, ().
.
因为0<a<2,所以,.令 可得.
对参数讨论的得到最值。
所以函数在上为减函数,在上为增函数.
(I)定义域为. ………………………1分
.
令,则,所以或. ……………………3分
因为定义域为,所以.
令,则,所以.
因为定义域为,所以. ………………………5分
所以函数的单调递增区间为,
单调递减区间为. ………………………7分
(II) ().
.
因为0<a<2,所以,.令 可得.…………9分
所以函数在上为减函数,在上为增函数.
①当,即时,
在区间上,在上为减函数,在上为增函数.
所以. ………………………10分
②当,即时,在区间上为减函数.
所以.
综上所述,当时,;
当时,
查看习题详情和答案>>