摘要:∴对.常数A,B,都有
网址:http://m.1010jiajiao.com/timu_id_390517[举报]
已知常数a、b都是正整数,函数f(x)=
(x>0),数列{an}满足a1=a,
=f(
)(n∈N*)
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.
查看习题详情和答案>>
x |
bx+1 |
1 |
an+1 |
1 |
an |
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.
已知常数a、b都是正整数,函数(x>0),数列{an}满足a1=a,(n∈N*)
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.
查看习题详情和答案>>
已知常数a、b都是正整数,函数f(x)=
(x>0),数列{an}满足a1=a,
=f(
)(n∈N*)
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.
查看习题详情和答案>>
x |
bx+1 |
1 |
an+1 |
1 |
an |
(1)求数列{an}的通项公式;
(2)若a=8b,且等比数列{bn}同时满足:①b1=a1,b2=a5;②数列{bn}的每一项都是数列{an}中的某一项.试判断数列{bn}是有穷数列或是无穷数列,并简要说明理由;
(3)对问题(2)继续探究,若b2=am(m>1,m是常数),当m取何正整数时,数列{bn}是有穷数列;当m取何正整数时,数列{bn}是无穷数列,并说明理由.