摘要:21.设椭圆中心在原点O.焦点F1.F2在y轴上.焦距与短轴长的比为.(1)求离心率e,
网址:http://m.1010jiajiao.com/timu_id_365008[举报]
已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线
的焦点为F1.
(Ⅰ)求椭圆E的方程;
(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.
【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到
,又因为
,这样可知得到
。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到
,再利用
可以结合韦达定理求解得到m的值和圆p的方程。
解:(Ⅰ)设椭圆E的方程为![]()
①………………………………1分
②………………2分
③ 由①、②、③得a2=12,b2=6…………3分
所以椭圆E的方程为
…………………………4分
(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分
代入椭圆E方程,得
…………………………6分
………………………7分
、
………………8分
![]()
………………………9分
![]()
……………………………10分
当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,
圆P的方程为(x-2)2+(y-1)2=4;………………………………11分
同理,当m=-3时,直线l方程为y=-x-3,
圆P的方程为(x+2)2+(y+1)2=4
查看习题详情和答案>>
已知椭圆C中心在坐标原点O焦点在x上,F1,F2分别是椭圆C左、右焦点,M椭圆短轴的一个端点,过F1的直线l椭圆交于A、B两点,△MF1F2的面积为4,△ABF2的周长为
.
(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0)存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切.若存在,求出点P坐标及圆的方程;若不存在,请说明理由.
查看习题详情和答案>>
(1)求椭圆C的方程;
(2)设点Q的坐标为(1,0)存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直线PF1,PF2都相切.若存在,求出点P坐标及圆的方程;若不存在,请说明理由.
查看习题详情和答案>>
已知椭圆C:
的左、右两焦点分别为F1,F2,P是椭圆C上的一点,且在x轴的上方,H是PF1上一点,若
,
(其中O为坐标原点),
(Ⅰ)求椭圆C离心率e的最大值;
(Ⅱ)如果离心率e取(Ⅰ)中求得的最大值,已知b2=2,点M(-1,0),设Q是椭圆C上的一点,过Q,M两点的直线l交y轴于点N,若
,求直线l的方程。
查看习题详情和答案>>
(Ⅰ)求椭圆C离心率e的最大值;
(Ⅱ)如果离心率e取(Ⅰ)中求得的最大值,已知b2=2,点M(-1,0),设Q是椭圆C上的一点,过Q,M两点的直线l交y轴于点N,若