题目内容

已知椭圆C的中心在坐标原点,两焦点F1,F2在x轴上,离心率为
1
2
,椭圆的短轴端点和焦点所组成的四边
形周长等于8.
(1)求椭圆C的方程;
(2)M、N是直线x=4上的两个动点,且
F1M
-
F2N
=0.设E是以MN为直径的圆,试判断原点O与圆E的位置关系.
分析:(1)由离心率的值、及椭圆的短轴端点和焦点所组成的四边形周长等于8这2个条件求出椭圆的长半轴、半焦距的值,再利用长半轴、半焦距、短半轴之间的关系求出短半轴的长,待定系数法求出椭圆方程.
(2)设出M、N两点的坐标M(4,t1),N(4,t2),因为
F1M
F2N
=0
,可得:5×3+t1t2=0,化简
OM
ON
的结果等于1,大于0,故∠MON为锐角,所以原点O在圆E外.
解答:解:(1)由题意设椭圆的标准方程为
x2
a2
+
y2
b2
=1(a>b>0)
,由题意得:
c
a
=
1
2
,4a=8,
∴a=2,c=1,b2=a2-c2=3.
∴椭圆的标准方程为
x2
4
+
y2
3
=1

(2)由(1)知F1(-1,0),F2(1,0).设M(4,t1),N(4,t2),
F1M
=(5,t1),
F2N
=(3,t2),
OM
=(4,t1),
ON
=(4,t2),
因为
F1M
F2N
=0
,所以5×3+t1t2=0.
OM
ON
=4×4+t1t2=16-15=1>0,
故∠MON为锐角.所以原点O在圆E外.
点评:本题考查用待定系数法求椭圆的标准方程,2个向量的数量积的运算及点与圆的位置关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网