摘要:①当.∴函数g上单调递减.
网址:http://m.1010jiajiao.com/timu_id_364741[举报]
定义在(0,+∞)的函数
,其中e=2.71828…是自然对数的底数,a∈R.
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围,并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax,试证明:对n∈N*,当n≥2时,有
.
查看习题详情和答案>>
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围,并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax,试证明:对n∈N*,当n≥2时,有
查看习题详情和答案>>
定义在(0,+∞)的函数
,其中e=2.71828…是自然对数的底数,a∈R.
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围,并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax,试证明:对n∈N*,当n≥2时,有
.
查看习题详情和答案>>
(1)若函数f(x)在点x=1处连续,求a的值;
(2)若函数f(x)为(0,1)上的单调函数,求实数a的取值范围,并判断此时函数f(x)在(0,+∞)上是否为单调函数;
(3)当x∈(0,1)时,记g(x)=lnf(x)+x2-ax,试证明:对n∈N*,当n≥2时,有
查看习题详情和答案>>
设函数f(x)=lnx+aln(2-x).
(Ⅰ)求函数f(x)的定义域及其导数f'(x);
(Ⅱ)当a≥-1时,求函数f(x)的单调区间;
(Ⅲ)当a=1时,令g(x)=f(x)+mx(m>0),若g(x)在(0,1]上的最大值为
,求实数m的值.
查看习题详情和答案>>
(Ⅰ)求函数f(x)的定义域及其导数f'(x);
(Ⅱ)当a≥-1时,求函数f(x)的单调区间;
(Ⅲ)当a=1时,令g(x)=f(x)+mx(m>0),若g(x)在(0,1]上的最大值为
| 1 | 2 |