摘要:解:1)和
网址:http://m.1010jiajiao.com/timu_id_35987[举报]
解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2
现有5名同学的物理和数学成绩如下表:
物理 | 64 | 61 | 78 | 65 | 71 |
数学 | 66 | 63 | 88 | 76 | 73 |
(1)画出散点图;
(2)若与具有线性相关关系,试求变量对的回归方程并求变量对的回归方程.
查看习题详情和答案>>(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
和e2=
.
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
(θ为参数),C2的参数方程为
(t为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
的定义域为R,求实数m的取值范围.
查看习题详情和答案>>
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
|
|
(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
|
|
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1 |
f(x)+m |
(1)某小区有800个家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户.为了了解有关家用轿车购买力的某项指标,要从中抽取一个容量为100户的样本;(2)从10名同学中抽取3个参加座谈会.抽取方法有:①简单随机抽样,②系统抽样,③分层抽样.问题和方法配对正确 的是( )
查看习题详情和答案>>
(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
上存在两个不同点关于直线y=x对称,求出其坐标;若曲线y=x+
(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
及a=
加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间(0,
]上单调递减,在区间[
,1)上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
①若f(3)<0,试求a的取值范围;
②写出一组数a,x0(x0≠3,保留4位有效数字),使得f(x0)<0成立;
(2)在曲线y=x-
2 |
x |
p |
x |
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取a=
1 |
16 |
| ||
2 |
1 |
e |
1 |
e |
(1)已知函数f(x)=ax-x(a>1).
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线上存在两个不同点关于直线y=x对称,求出其坐标;若曲线(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取及加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间上单调递减,在区间上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>
①若f(3)<0,试求a的取值范围;
②写出一组数a,x(x≠3,保留4位有效数字),使得f(x)<0成立;
(2)在曲线上存在两个不同点关于直线y=x对称,求出其坐标;若曲线(p≠0)上存在两个不同点关于直线y=x对称,求实数p的范围;
(3)当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并取及加以研究.当0<a<1时,就函数y=ax与y=logax的图象的交点情况提出你的问题,并加以解决.(说明:①函数f(x)=xlnx有如下性质:在区间上单调递减,在区间上单调递增.解题过程中可以利用;②将根据提出和解决问题的不同层次区别给分.)
查看习题详情和答案>>