摘要:8.[理科.文科]已知:为实数.函数 ∈R.
网址:http://m.1010jiajiao.com/timu_id_34613[举报]
(文科)已知△ABC中,∠B=60°,且AB=1,BC=4,则边BC上的中线AD的长为多少?
(理科)在△ABC中,BC=a,AC=b,a、b是方程x2-2
x+2=0的两个根,且2cos(A+B)=1,求:
(1)∠C的度数;
(2)AB的长度.
查看习题详情和答案>>
(理科)在△ABC中,BC=a,AC=b,a、b是方程x2-2
3 |
(1)∠C的度数;
(2)AB的长度.
(文科做(1)(2)(4),理科全做)
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点
(1)证明:y1y2=-p2且(y1+y2)2=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①S△F1F2A-S△F1F2C=S△F1F2D-S△F1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
,若存在,求出点P的坐标;若不存在,说明理由.
查看习题详情和答案>>
已知过抛物线C1:y2=2px(p>0)焦点F的直线交抛物线于A(x1,y1),B(x2,y2)两点
(1)证明:y1y2=-p2且(y1+y2)2=2p(x1+x2-p);
(2)点Q为线段AB的中点,求点Q的轨迹方程;
(3)若x1=1,x2=4,以坐标轴为对称轴的椭圆或双曲线C2过A、B两点,求曲线C1和C2的方程;
(4)在(3)的条件下,若曲线C2的两焦点分别为F1、F2,线段AB上有两点C(x3,y3),D(x4,y4)(x3<x4),满足:①S△F1F2A-S△F1F2C=S△F1F2D-S△F1F2B,②AB=3CD.在线段F1 F2上是否存在一点P,使PD=
11 |
已知函数f(x)=|x-1|+|x-2|.
(1)求函数f(x)的最小值;
(2)(文科)已知k为非零常数,若不等式|t-k|+|t+k|≥|k|f(x)对于任意t∈R恒成立,求实数x的取值集合;
(3)(理科)设不等式f(x)≤2的解集为集合A,若存在x∈A,使得x2+(1-a)x=-9求实数a的最小值.
查看习题详情和答案>>
(1)求函数f(x)的最小值;
(2)(文科)已知k为非零常数,若不等式|t-k|+|t+k|≥|k|f(x)对于任意t∈R恒成立,求实数x的取值集合;
(3)(理科)设不等式f(x)≤2的解集为集合A,若存在x∈A,使得x2+(1-a)x=-9求实数a的最小值.
(理科)已知函数f(x)=alnx-ax-3(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f/(x)+
]在区间(t,3)上有最值,求实数m取值范围;
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)
(文科) 已知函数f(x)=ax3+
x2-2x+c
(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若g(x)=
bx2-x+d,在(1)的条件下,是否存在实数b,使得函数g(x)的图象与函数f(x)的图象恒有含x=-1的三个不同交点?若存在,求出实数b的取值范围;否则说明理由.
查看习题详情和答案>>
(1)讨论函数f(x)的单调性;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对任意的t∈[1,2],若函数g(x)=x3+x2[f/(x)+
m |
2 |
(3)求证:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*)
(文科) 已知函数f(x)=ax3+
1 |
2 |
(1)若x=-1是f(x)的极值点且f(x)的图象过原点,求f(x)的极值;
(2)若g(x)=
1 |
2 |