题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201112/65/f06fc0df.png)
2 |
(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三个顶点在抛物线L上,且直角顶点B的横坐标为1,过点A、C分别作抛物线L的切线,两切线相交于点D,直线AC与y轴交于点E,当直线BC的斜率在[3,4]上变化时,直线DE斜率是否存在最大值,若存在,求其最大值和直线BC的方程;若不存在,请说明理由.
分析:(Ⅰ)联立方程组,利用弦长公式,直接求出p的值;
(Ⅱ)设A(x1,x12),C(x2,x22),设BC的斜率为k,
,求出kAC,得到直线AC的方程,求出ED的斜率,利用函数的单调性求出斜率AD的最大值,求出BC的方程.
(Ⅱ)设A(x1,x12),C(x2,x22),设BC的斜率为k,
|
解答:(Ⅰ) 解:由
解得A(0,0),B(2p,2p)…2分
∴
=AB=
=2
p,
∴p=
…5分
(Ⅱ) 解:B(1,1),设A(x1,x12),C(x2,x22),kAC=
=x1+x2,
设BC的斜率为k,则
⇒x2-kx+k-1=0,
△=k2-4k+4≥0,
又1+x2=k⇒x2=k-1,C(k-1,(k-1)2),A(-
-1,(
+1)2),
kAC=x1+x2=k-
-2,
直线AC的方程为y-(k-1)2=(k-
-2)[x-(k-1)],
令x=0,y=k-
,所以E(0,k-
),
AD:y-x12=2x1(x-x1)⇒y=2x1x-x12,
同理CD:y=2x2x-x22,
联立两方程得D(
(k-
-2),
-k),E(0,k-
),kED=
=-4(1+
),
令u=
-k,在[3,4]递减,所以,当k=4时,kED最大为-
,
所以,BC的方程为y-1=4(x-1)即4x-y-3=0…12分
|
∴
2 |
4p2+4p2 |
2 |
∴p=
1 |
2 |
(Ⅱ) 解:B(1,1),设A(x1,x12),C(x2,x22),kAC=
| ||||
x1-x2 |
设BC的斜率为k,则
|
△=k2-4k+4≥0,
又1+x2=k⇒x2=k-1,C(k-1,(k-1)2),A(-
1 |
k |
1 |
k |
kAC=x1+x2=k-
1 |
k |
直线AC的方程为y-(k-1)2=(k-
1 |
k |
令x=0,y=k-
1 |
k |
1 |
k |
AD:y-x12=2x1(x-x1)⇒y=2x1x-x12,
同理CD:y=2x2x-x22,
联立两方程得D(
1 |
2 |
1 |
k |
1 |
k |
1 |
k |
k-
| ||||
|
2 | ||
k-
|
令u=
1 |
k |
60 |
7 |
所以,BC的方程为y-1=4(x-1)即4x-y-3=0…12分
点评:本题是中档题,考查直线与圆锥曲线方程的综合问题,设而不求的思想,韦达定理的应用,函数的单调性等知识,考查计算能力转化思想的应用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目