摘要:.所以.又.所以.所以椭圆的方程为. --------------------10分
网址:http://m.1010jiajiao.com/timu_id_339035[举报]
| x2 |
| a2 |
| y2 |
| b2 |
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于3+
| 2 |
已知在椭圆
中,F1(-c,0)(c>0)是椭圆的左焦点,A(a,0),B(0,b)分别是椭圆的右顶点和上顶点,点O是椭圆的中心.又点P在椭圆上,且满足条件:OP∥AB,点H是点P在x轴上的投影.
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于
,求椭圆的标准方程.
查看习题详情和答案>>
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于
如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4
x的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A、B两点,连MA、MB.
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
查看习题详情和答案>>
| 6 |
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
如图,已知椭圆C的中心在原点,其一个焦点与抛物线
的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A、B两点,连MA、MB.
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.

查看习题详情和答案>>
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
查看习题详情和答案>>
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,且经过点![]()
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存过点
(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆
的方程为
,由题意得![]()
解得![]()
第二问若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.解得。
解:⑴设椭圆
的方程为
,由题意得![]()
解得
,故椭圆
的方程为
.……………………4分
⑵若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.
又
,
因为
,即
,
所以![]()
.
即
.
所以
,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
查看习题详情和答案>>