题目内容

如图,已知椭圆C的中心在原点,其一个焦点与抛物线y2=4
6
x
的焦点相同,又椭圆C上有一点M(2,1),直线l平行于OM且与椭圆C交于A、B两点,连MA、MB.
(1)求椭圆C的方程.
(2)当MA、MB与x轴所构成的三角形是以x轴上所在线段为底边的等腰三角形时,求直线l在y轴上截距的取值范围.
精英家教网
分析:(1)抛物线y2=4
6
x
的焦点(
6
,0)
,又椭圆C上有一点M(2,1),由此可求出椭圆方程.
(2)设直线在y轴上的截距为m,则直线l:y=
1
2
x+m
,由直线l与椭圆C交于A、B两点,可导出m的取值范围是{m|-2<m<2且m≠0},设MA、MB的斜率分别为K1,K2,K1+K2=0,然后结合题设条件和根与系数的关系知MA,MB与x轴始终围成等腰三角形,从而得到m的取值范围.
解答:解:(1)抛物线y2=4
6
x
的焦点(
6
,0)
,又椭圆C上有一点M(2,1)∴椭圆方程为,
x2
8
+
y2
2
=1

(2)l∥OM?kl=kOM=
1
2
,设直线在y轴上的截距为m,则直线l:y=
1
2
x+m

直线l与椭圆C交于A、B两点,
y=
1
2
x+m
x2
8
+
y2
2
=1
?x2+2mx+2m2-4=0?△=(2m)2-4(2m2-4)>0

∴m的取值范围是{m|-2<m<2且m≠0},设MA、MB的斜率分别为K1,K2,∴K1+K2=0,设A(x1y1),B(x2y2),则K1=
y1-1
x1-2
K2=
y2-1
x2-2
K1+K2=
y1-1
x1-2
+
y2-1
x2-2
=
(y1-1)(x2-2)+(y2-1)(x1-2)
(x1-2)(x2-2)

=
(
1
2
x1+m-1)(x2-2)+(
1
2
x2+m-1)(x1-2)
(x1-2)(x2-2)
=
x1x2+(m-2)(x1+x2)-4(m-1)
(x1-2)(x2-2)

=
2m2-4-2m2+4m-4m+4
(x1-2)(x2-2)
=0

故MA,MB与x轴始终围成等腰三角形.∴m的取值范围是{m|-2<m<2且m≠0}
点评:本题考查直线与圆锥曲线的综合问题,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网