摘要:解:(Ⅰ)∵DE⊥平面ACD.AF平面ACD ∴DE⊥AF
网址:http://m.1010jiajiao.com/timu_id_33612[举报]
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题).不等式:|x-1|+|x+2|<5的解集是
B.(几何证明选做题)如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为
.
C.(坐标系与参数方程选做题)在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
查看习题详情和答案>>
A.(不等式选做题).不等式:|x-1|+|x+2|<5的解集是
{x|-3<x<2}
{x|-3<x<2}
.B.(几何证明选做题)如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为
9 |
2 |
9 |
2 |
C.(坐标系与参数方程选做题)在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或8
2或8
.
A.(不等式选做题)不等式|
|≤1的实数解集为 .
B.(几何证明选做题)如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则
= .
C.(坐标系与参数方程选做题)若△ABC的底边BC=10,∠B=2∠A,以B点为极点,BC 为极轴,则顶点A 的极坐标方程为 .
查看习题详情和答案>>
x+2 |
x+1 |
B.(几何证明选做题)如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.则
AE |
CE |
C.(坐标系与参数方程选做题)若△ABC的底边BC=10,∠B=2∠A,以B点为极点,BC 为极轴,则顶点A 的极坐标方程为
(选修4-1)如图,在△ABC中,∠ABC=90°,以BC为直径的圆O交AC于点D,设E为AB的中点.
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
(θ为参数),直线l经过点p(2,2),倾斜角a=
.
(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.
查看习题详情和答案>>
(I)求证:直线DE为圆O的切线;
(Ⅱ)设CE交圆O于点F,求证:CD•CA=CF•CE
(选修4-4)在平面直角坐标系xoy中,圆C的参数方程为
|
π |
3 |
(I)写出圆C的标准方程和直线l的参数方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA|-|PB|的值.
(选修4-5)已知函数f(x)=|2x+1|,g(x)=|x|+a
(Ⅰ)当a=0时,解不等式f(x)≥g(x);
(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.