网址:http://m.1010jiajiao.com/timu_id_32560[举报]
一、 选择题:
1、答案:D
解:②表示垂直于同一平面的两条直线互相平行;
③表示垂直于同一直线的两个平面互相平行;
2、答案:D ;
解:,非P真;又
真,所以选D;
3、答案:B ;
解:本题考查了正方体堆垒问题及数列通项公式的求解.列出该数列的前几项,通过相邻项间的关系可得出该数列的规律而得出一等差数列.
由图示可得,该正方体的个数所组成的数列1,3,6,…, 其后一项减前一项得一数列2,3,4,…为一个等差数列.由此可得第6层的正方体的个数为1,3,6,10,15,21,… ,
故应选B.
4、答案:D ;
解:的图象向右平移
单位后得到:
,故选D;
5、答案:B ;
解:据题意可知集合A表示函数的定义域,
,易化简得
,由于B
A,故当
时,即
时易知符合题意;当
时,
,要使B
A,结合数轴知需
或
(经验证符合题意)或
(经验证不合题意舍去),解得
,故综上所述可知满足条件的
的取值范围是
,故答案为B;
6、答案:D ;
解:由图象变换可以得到两个图象间的关系,函数是由函数
的图象向右平移一个单位得到,而
是由函数
的图象关于y轴对称得到
再向右平移一个单位得到,故两函数的图象关于直线
对称。故选D
7、答案:B ;
解:两直线平行,则其斜率相等,利用两点间直线的斜率公式可以得两字母间的关系,于是可得两点间的距离.
由题意得
所以故应选B.
8、答案:B ;
解:由于,故函数的定义域为
,根据已知0<a<b<c,则易将函数解析式化简为
=
,故
且其定义域关于原点对称,即函数为偶函数,其图象关于y轴对称。故应选B.
9、答案:C ;
解:本题考查直线的斜率,由垂直关系得两直线的斜率之积为,再由均值不等式转化转化得出不等关系式,分类讨论得出
的最小值.由题意
,
∵两直线互相垂直,
∴,即
,
∴,则
.
当时,
;当
时,
.
综合得的最小值为
. 故应选C.
10、答案:C ;
解:由题意可知,存在,使
,即
,从函数定义出发,画出映射帮助思考,从A到B再到C是由题意可得,如果继续对C集合中的
,应用法则
,则会得到
,从B到C再到D的映射为
,即存在
,使
,即函数
过点
,即方程
有解,易知
在实数集R上无解故选D。
二、 填空题:
11、答案:1 ;
解:根据集合中元素的确定性,我们不难得到两集合的元素是相同的,这样需要列方程组分类讨论,显然复杂又烦琐.这时若能发现0这个特殊元素,和中的a不为0的隐含信息,就能得到如下解法.由已知得
=0,及a≠0,所以b=0,于是a2=1,即a=1或a=-1,又根据集合中元素的互异性a=1应舍去,因而a=-1,故a2008+b2008=(-1) 2008=1.
12、答案:120度;
解:依题意可知:A、O、B、C构成平形四边形,
,故
的内角C为120度;
13、答案:;
解:
.
14、答案: ;
解:,设
,依题意可知:
,又P在曲线上,故
,故点P的坐标为
;
15、答案:49 ;
解:本题考查用取特殊值法进行验证.由题意分析,
不妨设各个格中的数都为1, 则符合题意要求,所以表中所有数字之和为49.
三、 解答题:
16、 解:(1)因为
,
所以.
(2)由即
,
亦即.
故,
当且仅当时取得等号.
又.
故当时有
有最大值
.
17、 解:(Ⅰ)从九个小球中任取三个共有种取法,它们是等可能的.设恰好有一球编号是3的倍数的事件为A,
则.
(Ⅱ)设至少有一球编号是3的倍数的事件为B,
则 .
(Ⅲ)设三个小球编号之和是3的倍数的事件为C,设集合,
,则取出三个小球编号之和为3的倍数的取法共有
种,则
.
18、解:设椭圆方程为
(Ⅰ)易得所求椭圆方程为.
(Ⅱ)解法一:由题意知直线的斜率存在,设直线
的方程为
由,消去y得关于x的方程:
由直线与椭圆相交于A、B两点,
解得
又由韦达定理得原点
到直线
的距离
.
对两边平方整理得:
(*)∵
,
整理得:
又
,
从而
的最大值为
,此时代入方程(*)得
所以,所求直线方程为:.
19、(Ⅰ)解:(1)3-k2>1-k>0k∈(-1,1),方程所表示的曲线是焦点在x轴上的椭圆;
(2) 1-k>3-k2>0k∈(-
,-1),方程所表示的曲线是焦点在y轴上的椭圆;
(3)1-k=3-k2>0k=-1,表示的是一个圆;
(4)(1-k)(3-k2)<0k∈(-∞,-
)∪(1,
),表示的是双曲线;
(5)k=1,k=-,表示的是两条平行直线;k=
,表示的图形不存在.
(Ⅱ)解:依题意,设双曲线的方程为-
=1(a>0,b>0).∵e=
=
,c2=a2+b2,∴a2=4b2.
设M(x,y)为双曲线上任一点,则|PM|2=x2+(y-5)2=b2(-1)+(y-5)2=
(y-4)2+5-b2(|y|≥2b).
①若4≥2b,则当y=4时,|PM|min2=5-b2=4,得b2=1,a2=4.从而所求双曲线方程为-x2=1.
②若4<2b,则当y=2b时,|PM|min2=4b2-20b+25=4,得b=(舍去b=
),b2=
,a2=49.
从而所求双曲线方程为-
=1.
20、解:如图,连结,由
为
中点,则
从而
.故AM和
所成的角为
所成的角,易证
≌
。所以
,故
所成的角为
。又设AB的中点为Q,则
又
从而CN与AM所成的角就是
(或其补角)。易求得
在
中,由余弦定理得
,故
所成的角为
。
21、解 (1)当a=1,b=?2时,f(x)=x2?x?3,
(2)∵f(x)=ax2+(b+1)x+(b?1)(a≠0)恒有两个不动点,
∴x=ax2+(b+1)x+(b?1),
即ax2+bx+(b?1)=0恒有两相异实根
于是Δ′=(
(3)由题意A、B两点应在直线y=x上,设A(x1,x1),B(x2,x2)
∴x′=y′=,
又点M在直线上有
,
即
∵a>0,∴≥2
当且仅当
即a=
∈(0,1)时取等号,
作者: 湖南省衡阳市祁东县育贤中学 高明生 彭铁军
PC: 421600
TEL: 0734---6184532
Cellphone: 13187168216
E―mail: hunanqidonggms@163.com
QQ: 296315069