摘要:12.两圆的位置关系的判定方法. 设两圆圆心分别为O1.O2.半径分别为r1.r2.|O1O2|为圆心距.则两圆位置关系如下: |O1O2|>r1+r2两圆外离, |O1O2|=r1+r2两圆外切, | r1-r2|<|O1O2|< r1+r2两圆相交, | O1O2 |=| r1-r2|两圆内切, 0<| O1O2|<| r1-r2|两圆内含.
网址:http://m.1010jiajiao.com/timu_id_3203308[举报]
三题中任选两题作答
(1)(2011年江苏高考)已知矩阵A=
,向量β=
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
),若直线l过点P,且倾斜角为
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程; ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
+
+
的最小值.
查看习题详情和答案>>
(1)(2011年江苏高考)已知矩阵A=
|
|
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为(4,
| π |
| 2 |
| π |
| 3 |
①求直线l的参数方程和圆C的极坐标方程; ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
| 1 |
| 3a+2 |
| 1 |
| 3b+2 |
| 1 |
| 3c+2 |
本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)(本小题满分7分)选修4-4:坐标系与参数方程
以直角坐标系的原点
为极点,
轴的正半轴为极轴。已知点
的直角坐标为(1,-5),点
的极坐标为
若直线
过点
,且倾斜角为
,圆
以
为圆心、
为半径。
(I)求直线
的参数方程和圆
的极坐标方程;
(II)试判定直线
和圆
的位置关系.
(2)(本小题满分7分)选修4-4:矩阵与变换
把曲线
先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于
轴的反射变换变为曲线
,求曲线
的方程.
(3)(本小题满分7分)选修4-5:不等式选讲
关于
的一元二次方程
对任意
无实根,求实数
的取值范围.
查看习题详情和答案>>
三题中任选两题作答
(1)(2011年江苏高考)已知矩阵
,向量
,求向量α,使得A2α=β
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为
,若直线l过点P,且倾斜角为
,圆C以M为圆心、4为半径.
①求直线l的参数方程和圆C的极坐标方程; ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
的最小值.
查看习题详情和答案>>
(1)(2011年江苏高考)已知矩阵
(2)(2011年山西六校模考)以直角坐标系的原点O为极点,x轴的正半轴为极轴,已知点P的直角坐标为(1,-5),点M的极坐标为
①求直线l的参数方程和圆C的极坐标方程; ②试判定直线l和圆C的位置关系.
(3)若正数a,b,c满足a+b+c=1,求
查看习题详情和答案>>