摘要:在Rt∆ADC和Rt∆BDC中有CD2=AC2-AD2=BC2-BD2,B2-b2cos2A=a2-2,整理得a2=b2+c2-2bccosA. ① 同理可得b2=a2+c2-2accosB. ② C2=a2+b2-2abcosC. ③这个结论就是著名的余弦定理.在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素.可求出其余的另外三个元素.(1).在锐角ΔABC中.已知∠A=60°,b=5,c=7,试利用①.②.③求出a, ∠B,∠C,的数值?(2)已知在锐角ΔABC中.三边a,b,c分别是 7.8.9.求出∠A,∠B,∠C的度数.

网址:http://m.1010jiajiao.com/timu_id_300722[举报]

1.C   2.B   3.C   4.C   5.A  6.D  7.C   8.B  9.B  10.B

11.3    12. 360°-36°?n       13.3.98cm     14.210cm,    15. 5   16.y= 2x+2

17.∵(x+5)(x+7)=(x2+12x+35+1-1)=(x+6)2-1<(x+6)2

∴(x+5)(x+7)< (x+6)2

18.(1)图略                                        ……………………    3分

(2)12个单位                                        ………………   6分

19.解:连接DE,BF.

∵四边形ABCD是矩形,

∴AB∥CD.   ∠ODF=∠OBE                    …………   1分

∵EF垂直平分BD,

∴OD=OB

∴ΔDOF≌ΔBOE(ASA)                            ………    2分

∴DF=BE

∴四边形BFDE是平行四边形。

∵EF垂直平分BD,

FD=FB(线段的垂直平分线上的点到线段两端点的距离相等)

∴平行四边形BFDE是菱形               ………    4分

∴DF=BF=DE=EB,OE=OF.

在RtΔDOF中,DF=+=250

∴S菱形DEBF=BD?EF=DF?BC

Х400х300=250?BC

∴BC=240                           …………   5分

在RtΔBCF中 FC===70

∴CD=DF+FC=250+70=320

∴S梯形ABCD=CD?BC=320×240=76800m2      ……………………..    6分

答略                      ……………     7分

20.解:将圆柱有相对的A.B垂直切开,并将半圆柱侧面展开成一个矩形, ………   2分

如图所示,作BO⊥AO于O,则AO,BO分别平行于矩形的两边,作A点关于D点的对称点Aㄆ,连AㄆB,则ΔA`

BO为直角三角形,且BO==12,A`O=(15-3)+4=16, …………    4分

有勾股定理得    

A`B2=A´O2+BO2=162+122=400,

∴A´B=20                                  ………………  7分

故蜘蛛沿B外_壁C内_壁A路线爬行最近,

且它至少要走20cm                            ………    8分

 

21.因为0.1x+0.01x2,而12,所以0.1x+0.01x2=12,………………   2分

解之,得 舍去,故<40,

所以甲车未超速行驶。 ………………………………………………     4分

=kx,把(60,15)代入,得 15=60k。解得,k=

=x.          ………………………………………………  6分

由题意知 10<x<12解之得:40<x<48.

所以乙车超速行驶。………………………………………………      8分

22.(1)∵a2=b2+c2-2bccosA=25+49-2?5?7?cos60º= 39

  ∴a=                                      ……………   2分

∵b2=a2+c2-2accosB. 

∴cosB==

∠B≈36º                                         ……………   3分

∴∠C=180º-60º-36º=84º                         ……………    4分

(2).由余弦定理得  72=82+92-2×8×9cosA

得 cosA=

∴∠A≈48º                                               ………… 6分

再得  82=92+72-2×9×7cosB

得 cosB=

∠B≈58º                                      ………………              7分

∴∠C=180º-∠A-∠B=74º                              ………           8分

23.(1).连接BE,可得ΔABE∽ΔADB.               ………………               2分

∴ AB2=AD?AE                               ………………                4分

(2).成立                                     ………………                5分

连接EB,可证ΔAEB∽ΔABD,                     ………………              7分

∴仍可得AB2=AD?AE                               ……………            8分

24.(1)y=60-(x-100)0.02x   (0<x<550)              ………………         4分

(2)根据题意可列方程为:6000=[60-(x-100)0.02]x-40x

整理可得:x2-3100x+300000=0            ……………….         6分

       (x-500)(x-600)=0                              …………   8分

      x1=500     x2=600(舍去)                      ………………      9分    

销售商订购500个时,该厂可获利润6000元。                ……….  10分   

25.(1)S梯形OPFE=(OP+EF)?OE=(25+27)

设运动时间为t秒时,梯形OPFE的面积为y

则y=(28-3t+28-t)t=-2t2+28t=-2(t-7)2+98.         ………………  3分

所以当t=7秒时,梯形OPFE的面积最大,最大面积为98;    ……………… 4分

(2)当S梯形OPFE=SΔAPF时,

-2t2+28t=,解得t1=8,t2=0(舍去)。                       ……………  7分

当t=8秒时,FP=8                                  ………………   8分

(3) 由,                        ………………    10分

且∠OAB=∠OAB,                                     ………   11分

可证得ΔAF1P1∽ΔAF2P2                                            ……  12分

 

根据所给的基本材料,请你进行适当的处理,编写一道综合题.
编写要求:①提出具有综合性、连续性的三个问题;②给出正确的解答过程;③写出编写意图和学生答题情况的预测.
材料①:如图,先把一矩形纸片ABCD对折,得到折痕MN,然后把B点叠在折痕线上,得到△ABE,再过点B把矩形ABCD第三次折叠,使点D落在直线AD上,得到折痕PQ.当沿着BE第四次将该纸片折叠后,点A就会落在EC上.
精英家教网
材料②:已知AC是∠MAN的平分线.
(1)在图1中,若∠MAN=120°,∠ABC=ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
则AB+AD=
 
AC(用含α的三角函数表示).
精英家教网
材料③:
已知:如图甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿线段BA向点A匀速运动,速度为1cm/s;点Q由A出发沿线段AC向点C匀速运动,速度为2cm/s;连接PQ,设运动的时间为t(s)(0<t<2).
精英家教网
编写试题选取的材料是
 
(填写材料的序号)
编写的试题是:(1)设△AQP的面积为y(cm2),求y与t之间的函数关系式.
(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值.
(3)如图(2),连接PC,并把△PQC沿QC翻折得到四边形PQP'C.是否存在某一时刻t,使四边形PQP'C为菱形?若存在,求出此时菱形的边长.
试题解答(写出主要步骤即可):(1)过点Q作QD⊥AP于点D,证△AQD∽△ABC,利用相似性质及面积解答;
(2)分别求得Rt△ACB的周长和面积,由周长求出t,代入函数解析式验证;
(3)利用余弦定理得出PC、PQ,联立方程,求得t,再代入PC解得答案.
查看习题详情和答案>>

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网